

SNOW WATER EQUIVALENT RETRIEVAL USING SPACEBORNE REPEAT-PASS L-BAND SAR INTERFEROMETRY OVER SPARSE VEGETATION COVERED REGIONS

Yang Lei¹, Cunren Liang², Jiancheng Shi¹, Charles Werner³, Jing Zhang¹

¹National Space Science Center (NSSC), Chinese Academy of Sciences (CAS) ²Peking University ³GAMMA Remote Sensing AG

Background: Repeat-pass InSAR approach

Problems:

For spaceborne L-band InSAR observations with long temporal baseline (tens of days to few months), temporal decorrelation dominates (especially when covered by vegetation) and phase unwrapping becomes problematic!

Motivation:

Given large archive of spaceborne L-band repeat-pass InSAR dataset, e.g. JAXA's ALOS, ALOS-2, future ALOS-4, China's L-SAR, NASA's future NISAR, ESA's future ROSE-L, it is desired to refine the approach for such spaceborne L-band low-coherence dataset with long temporal baselines (tens of days to few months) and study the effect of sparse vegetation cover on SWE retrieval.

Credit: Rott et al., 2003

Methodology: InSAR Processing Workflow

Lei, Y., Siqueira, P. and Treuhaft, R., 2017. A physical scattering model of repeat-pass InSAR correlation for vegetation. Waves in Random and Complex Media, 27(1), pp.129-152.

Methodology: model simulation

Snow-covered ground without vegetation

$$\Delta \Phi_{
m s} = 2k_i \cdot rac{lpha}{2} \left(1.59 + heta^{5/2}
ight) \cdot \Delta {
m SWE}$$

(Guneriussen et al., 2001; Leinss et al., 2015)

For modeling sparse forest-covered snow ground

- Vegetation extinction coefficient of 0.1 dB/m
- Ground-to-volume ratio of -5 dB (for 15 m tall trees at L-band HH-pol; Pardini et al., 2021)

•
$$\gamma_d^v = \gamma_d^g = 0.7$$

 $h_{\eta} = 15 \text{ m}$

Simulation setup

- Random motion of 2 cm for tree components at a reference height of 15 m
- Fixed snow density of 0.2 g/cm³
 - $\kappa_z = 0.01 \text{ rad/m}, \lambda = 24.2 \text{ cm}, \theta = 31.7^{\circ}$ (for ALOS-2)
- Effective dielectric constant for snow-covered vegetation, ε_{veg} , assuming 1 cm increase of SWE causes ε_{veg} to increase by 3.2500e 04

Study Area and Dataset

- SNOTEL weather stations (114 stations statewide; daily 1978-present)
- SnowEx 17 snow pit measurements (264 points; February 1-25, 2017)
 - ALOS-2 stripmap FBD (3 scene mosaic; 20160912-20170130)
- Sentinel-1 TOPS ascending (1 scene; monthly 2016-2017)
 - Sentinel-1 TOPS descending (1 scene; monthly 2016-2017)

GEDI-measured Sparse/short vegetation height: 10-20 m (average of 15 m)

Data Processing

I. Phase Unwrapping

Unwrapped InSAR phase (12 rlks x 24 alks)

Wrapped InSAR phase (2 rlks x 4 alks)

Interpolation to finer grid

2500

3000

3500

4000

2000

*p*coarse

II. Phase Noise Reduction

III. Troposphere Delay Correction

ERA-5 Reanalysis Weather Data Troposphere phase delay (20170130) SRTM DEM

Troposphere phase delay (20160912)

Tropospheric InSAR (differential) phase delay

00 1000 1500 2000 2500 3000 3500 4000

IV. Phase to SWE Conversion

Conversion Factor

$$\Delta \Phi_{\rm s} = 2k_i \cdot \frac{\alpha}{2} \left(1.59 + \theta^{5/2} \right) \cdot \Delta \text{SWE}.$$

Leinss et al., 2015

InSAR phase to SWE conversion factor

Validation of SWE product

300 mm

0 mm

Comparison with optical image

InSAR measurement 176 mm InSAR Estimated SWE (mm)

SnowEx cal site

Landsat (20170131)

300 mm

Comparison with SNOTEL in-situ data

- Statistically significant correlation between the two dataset
- Large uncertainty due to temporal decorrelation with long temporal baseline (4 months)
- Short dynamic range of inversion results (80 mm) compared to in-situ measurements (400 mm), which will be explained later

Sentinel-1 9 points (ascending 6-day pair) Sentinel-1 13 points (descending 12-day pair)

Sentinel-1 C-band results

- \succ Statistically significant correlation $\frac{2}{m}$
- Smaller uncertainty due to shorter temporal baseline (6-12 days); longer temporal baseline decorrelates C-band signals rapidly over vegetated areas
- Even shorter dynamic range of SWE inversion results

Conclusions

- L-band InSAR has promising performance with small but usable coherence (>0.2) even with a temporal span of 4 months
- Large uncertainty of L-band InSAR can be reduced a lot when using shorter temporal spans e.g. 12 days for NISAR or 4-8 days for China's L-SAR
- C-band InSAR has poor coherence with a temporal span of >=6 days when subjected to vegetation-dominated temporal decorrelation
- L-band InSAR phase affected by sparse vegetation scattering result in smaller dynamic range of inverted SWE compared to no-veg covered case, C-band more severely affected
- Further experimental validation and model analysis are desired using shorter temporal baselines (< 1 month) at L-band over various forest conditions

Thanks!

Freeze/thaw soil analysis

Freeze/thaw soil analysis

- Only 6 out of the 30 SNOTEL stations have soil condition measurements and they are evenly distributed across the study area (thus considered representative of the larger region)
- Dry soil with similar small moisture between the two dates of the InSAR pair
- For the single site with moisture of 25%, the temperature in winter was above zero (unfrozen)

Both the freeze/thaw induced deformation and penetration depth change are small here

The long-term freeze/thaw soil state change may introduce an overall bias of InSAR phase delay as well as increase the SWE inversion uncertainty (few-cm level phase delay), but does not account for the inverted SWE trend that correlates with in-situ SWE (tens of cm phase delay), which should be due to the snow accumulation