

Comparison of low dimensional profile models for the characterization of tropical forests using SAR tomography

Pierre-Antoine Bou ^(1,2), Laurent Ferro-Famil^(2,3), Frederic Brigui⁽¹⁾, Yue Huang⁽²⁾, Ludovic Villard⁽²⁾

pierre-antoine.bou@onera.fr

⁽¹⁾ ONERA, DEMR/TSRE, Palaiseau, France
 ⁽²⁾ CESBIO, University of Toulouse, Toulouse, France
 ⁽³⁾ ISAE-SUPAERO, University of Toulouse, DEOS Dept., Toulouse, France

Context : Need for Parametric Tomography

Parameter extraction in Tomography

Parameter extraction by models with few parameters

Objective : Choice of a low dimensionality model

TomoSAR Forest Response Model

Comparison of reflectivity profile basis

- TropiSAR Campaign, 2009
- ONERA SETHI
- P-band
- 6 pass
- $\delta_{az} = 1.245m$
- $\delta_{rg} = 1m$
- $\delta_z = 12.5m$

Courtesy ONERA

Capon Tomogram

Estimation of the model order for single PolTomography

- Modelled with an adaptive basis & sparse signal estimation 2 components "Forest structure characterization using SAR tomography and an adaptative estimation technique", EuSAR 2022
- Using a fixed basis : Exponential Volume + Ground
 Similar Results
- Notice : the Volume component is always located below the LiDAR upper limit estimate

Fixed 2 components basis :

Parametric estimation of Volume & Ground

Proposed 2 components reflectivity models

Retrieved z_g , z_v & reflectivity profile for a single polarization tomogram

Exponential model

CESBIO

- Overestimated volume
- Underestimated ground

Exponential model

Constraint : large α values

Constraint retrieval :

Correct z_g , z_v estimates

Restriction to narrow exponential profiles

Exponential model : Interpretation

Constraint : large α

Reflectivity fit could be improved

Exponential model with global decorrelation terms

Inclus deco

Inclusion of a global decorrelation term :

- SNR
- Spectral shift (range geometry)

Very good Ground, Volume estimates & reflectivity fit

Reconstructed tomogram with large α

Model with two Diracs & decorrelation terms

Tomogram with 2 Diracs components

• Very good z_g , z_v fit & excellent reflectivity fit

60

Box model for the volume, the ground & decorrelation terms

Tomogram with 2 Box components

• Very good z_g , z_v fit & excellent reflectivity fit

Gaussian model for the volume, the ground & decorrelation terms

cnes

ESBIO

Égalité Fraternit

RÉPUBLIQUE

FRANÇAISE

ONERA

THE FRENCH AEROSPACE LAB

• Very good z_g , z_v fit & excellent reflectivity fit

Comparison of the ground estimates

Liberté Égalité Fraternité

THE FRENCH AEROSPACE LAB

PollnSAR - BIOMASS 16

Validation of the parametric tomographic approach

• Low rank model fit

Relationship between z_{vol} fit & z_{vol} SKP

Validation of the parametric tomographic approach

- $z_v \equiv z_{peak_{volSKP}}$
- Single Pol HH fit is equivalent to full Pol SKP approach

Conclusion :

Liberté Égalité Fraternité

RÉPUBLIQUE FRANÇAISE ONERA

THE FRENCH AEROSPACE LAB

- Overestimated z_{top}
- Underestimated *z_{ground}*

CESBID

Wide volume shape

- exaggerated spread to account for decorrelation
- Ambiguous estimation of ground component

Conclusion :

All low rank models lead to comparable estimates of ground & volume height

Accurate reflectivity modelling requires decorrelation terms

HH model fit estimates are similar to SKP ones

Conclusion :

Introduction of a decorrelation term to adjust the reconstruction & be similar to the original tomogram

After accounting for decorrelation terms all models converge to similar rounded narrow shape

Next step

RÉPUBLIQUE

THE FRENCH AEROSPACE LAB

FRANÇAISE Liberté Égalité Fraternité

- Application to BIOMASS like configuration with less resolution
- Synergy of BIOMASS acquisition modes

