BURNED AREA MAPPING USING SCATTERING SPECTRUM INFORMATION FROM FULL POLARIMETRIC ALOS-2 SAR DATA

S. Dey¹, A. Richardson², A. Bhattacharya³

¹Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur ²British Columbia Wildfire Service, Canada ³MRSLab, CSRE, Indian Institute of Technology Bombay, Mumbai, India

Dichotomies in Forest Fire Mapping

* In full-polarimetric (FP) SAR, the 2 \times 2 complex scattering matrix can be represented as,

$$\mathbf{S} = \begin{bmatrix} S_{\rm HH} & S_{\rm HV} \\ S_{\rm VH} & S_{\rm VV} \end{bmatrix} \Rightarrow \tilde{\mathbf{k}} = V([\mathbf{S}]) = \frac{1}{2} \operatorname{Tr}(\mathbf{S}\Psi)$$

 \mathbf{k} = Pauli basis vector

- \bullet V(.) is the vectorization operator on the scattering matrix, Tr is the trace operator
- \clubsuit The second-order information can be obtained as,

$$\mathbf{T} = \langle \mathbf{ ilde{k}} \, \mathbf{ ilde{k}}^{*T}
angle$$

 \clubsuit Now let us define a 3 ×1 complex scattering vector,

$$\tilde{\omega} = \begin{bmatrix} A e^{i\phi_1} \\ B e^{i\phi_2} \\ C e^{i\phi_3} \end{bmatrix}$$

* We then project the normalized complex vector $\tilde{\omega}_n = \tilde{\omega}/|\tilde{\omega}|$ by the coherency matrix, **T**

$$\tilde{\omega}_s = \mathbf{T}\tilde{\omega}_n$$

- * $\tilde{\omega}_s$ allows us to project the data (T), onto any arbitrary scattering basis (by varying $\tilde{\omega}_n$)
- \clubsuit T is positive semi-definite, $\langle \tilde{\omega}_n^* \tilde{\omega}_s \rangle \geq 0$
- One can note that $\tilde{\omega}_s = \tilde{\omega}_n$ only when **T** represents a canonical target
- \clubsuit We utilize the projected scattering vector $\tilde{\omega}_s$ to obtain a higher-order coherency matrix,

$$\mathbf{T}_s = \langle \tilde{\omega}_s \tilde{\omega}_s^{*T} \rangle$$

- *** T**_s is Hermitian and positive semi-definite
- lacksimWe then utilize Schur factorization to obtain the second order scattering information, \mathbf{T}_p
- The scattering-type parameter is derived as,

$$\tan \theta_{\rm FP}^p = \frac{m_{\rm FP} \, \text{Span} \, (T_{11} - T_{22} - T_{33})}{T_{11} \, (T_{22} + T_{33}) + m_{\rm FP}^2 \, \text{Span}^2}$$

 $-45^{\circ} \leq \theta_{FP} \leq 45^{\circ}$

ALOS-2 Mumbai (L-band)

Comparison of $\theta_{\rm FP}$ with $\overline{\alpha}$ and $m_{\rm FP}$ for "U" (red), "F" (green) and "O" (blue) over FP ALOS-2 L-band data.

Comparison of $\theta_{\rm FP}$ with $\overline{\alpha}$ and $m_{\rm FP}$ for "U" (red), "OU" (magenta) and "O" (blue) over FP RS-2 C-band data.

Analysis Over Different Targets (θ_{FP}^{p})

Study Area and *in-situ* Data

IT Bombay

ALOS-2 data over BC, Canada

Different parameters

Different parameters

Dominant eigen parameters

Classified Map

Classified map using spectrum

Classified map using eigen-based parameters

Features	Overall accuracy	Kappa score
$ heta_{ m FP}$ spectrum	85.12%	0.81
Eigen-based	74.91%	0.63
Н-А-α	81.12%	0.73
H-A	79.34%	0.32
Н	62.21%	0.36
А	76.02%	0.71

Conclusions

□ This work demonstrates an polarimetric spectrum based approach to identify the forest fire areas

Polarimetric spectrum is sensitive to the geometry of the targets and can be a highly effective technique for target characterization and classification

□ The classification accuracy using polarimetric spectrum is $\approx 10\%$ higher than the Eigen-based technique

□ In future, the S-band NISAR mission could enhance the overall forest-fire detection accuracy

Thank You