

## Change Detection in Multilook Polarimetric SAR Imagery with Hotelling-Lawley Trace and Determinant Ratio Test Statistics

Vahid Akbari1 Nizar Bouhlel2
1 University of Stirling, UK

2 Institut Agro, Univ Angers, France

POLINSAR AND BIOMASS 2023, Toulouse, 19th June 2023

ESA UNCLASSIFIED - For ESA Official Use Only

#### Change detection in matrix-variate data



The scattering vecor is multilooked with L number of looks

$$\mathbf{s} = [s_{hh}, s_{hv}, s_{vh}, s_{vv}]^T \in \mathbb{C}^d$$



$$\mathbf{X} = \frac{1}{L} \sum_{\ell=1}^{L} \mathbf{s}_{\ell} \mathbf{s}_{\ell}^{H}, \quad L \ge d$$

Let X and Y are independent and both bollows scaled complex Wishart distributions

$$p_{\mathbf{X}}(\mathbf{X}) \!=\! \frac{L^{Ld}|\mathbf{X}|^{L-d}}{\Gamma_d(L)|\mathbf{\Sigma}|^L} \exp\left(-L\mathrm{tr}(\mathbf{\Sigma}^{-1}\mathbf{X})\right)$$

$$\mathbf{X} \in s\mathcal{W}(L_x, \mathbf{\Sigma}_x)$$
 and  $\mathbf{Y} \in s\mathcal{W}(L_y, \mathbf{\Sigma}_y)$ 

Time 1



Time 2



Hyphothesis Testing

$$\begin{cases} H_0: \mathbf{\Sigma}_x = \mathbf{\Sigma}_y \\ H_1: \mathbf{\Sigma}_x \neq \mathbf{\Sigma}_y \end{cases}$$

#### Background



#### 1. Wishart Likelihood tatio test (LRT) statistic

K. Conradsen, A. A. Nielsen, J. Schou, and H. Skriver, "A test statistic in the complex wishart distribution and its application to change detection in polarimetric SAR data," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 1, pp. 4–19, Jan. 2003

#### 2. Complex-kind Hotelling Lawley Trace (HLT) statistic

Akbari, V., S.N. Anfinsen, A.P. Doulgeris and T. Eltoft, G. Moser, S. B. Serpico, Polarimetric SAR Change Detection with the Complex Hotelling-Lawley Trace Statistic, IEEE Trans. Geosci. Remote Sens., vol. 54, no. 7, pp. 3953–3966, Mar. 2016.

#### 3. Determinant Ratio Test (DRT) statistic

N. Boulel, V. Akbari and S. Méric, "Change detection in multilook polarimetric SAR imagery with determinant ratio test statistic," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 5200515-5200515, 2022.

#### 1) Similary Measure: Likelihood Test Statistic



Change detection test by LRT

$$au_{
m LRT} = -2
ho \ln Q$$

• The distribution of the LRT statistic is approximated by

$$\tau_{\text{LRT}} \sim \chi^2(d^2) + w_2[\chi^2(d^2+4) - \chi^2(d^2)]$$

• The test with a desired Pfa is given by

$$au_{ ext{LRT}} \mathop{\gtrless}\limits_{H_0}^{H_1} T$$

> where the threshold T is determined

$$Q = \frac{(L_x + L_y)^{d(L_x + L_y)}}{L_x^{dL_x} L_y^{dL_y}} \frac{|L_x \mathbf{X}|^{L_x} |L_y \mathbf{Y}|^{L_y}}{|L_x \mathbf{X} + L_y \mathbf{Y}|^{L_x + L_y}}.$$

and

$$\rho = 1 - \frac{2d^2 - 1}{6d} \left( \frac{1}{L_x} + \frac{1}{L_y} - \frac{1}{L_x + L_y} \right).$$

$$P_{\mathrm{fa}} = \int_{T}^{+\infty} f_{\tau_{\mathrm{LRT}}}(\tau | H_0) \mathrm{d}\tau.$$

K. Conradsen, A. A. Nielsen, J. Schou, and H. Skriver, "A test statistic in the complex wishart distribution and its application to change detection in polarimetric SAR data," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 1, pp. 4–19, Jan. 2003

#### 2) Similarity Measures: Hotelling-Lawley Trace

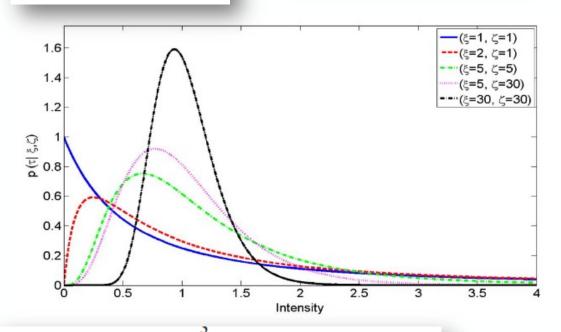


- Complex-kind Hotelling Lawley Trace (HLT) Statistic
- The exact distribution of the HLT statistic is difficult to derive
- The HLT is approximated by a Fisher-Snedecor Distribution
- Moments of HLT

$$E\{\tau_{HL}\} = \frac{d}{L_x - d},$$

$$E\{\tau_{HL}^2\} = \left(\frac{L_y + 1}{L_y}\right) \frac{dL_x^2(d(L_x - d) + 1)}{(L_x - d)^3 - (L_x - d)},$$

$$E\{\tau_{HL}^3\} = \frac{L_x^3}{(L_x - d)^4} [d^3(L_x - d) + 3d^2 + \frac{3}{L_y} \left(d^2(L_x - d) + d(d^2 + 2)\right) + \frac{2}{L_y^2} \left(d(L_x - d) + 3d^2\right)],$$


Solution to estimate the FS paramters

$$m_{\nu}^{(\text{FS})}(\xi,\zeta,\mu) = m_{\nu}^{(\text{HLT})}(L_a,L_b,d), \qquad \nu = 1,2,3.$$

$$\tau_{\rm HLT} = {\rm tr}(\mathbf{Y}^{-1}\mathbf{X}).$$

$$\begin{cases} H_0: \mathbf{\Sigma}_x = \mathbf{\Sigma}_y \\ H_1: \mathbf{\Sigma}_x \neq \mathbf{\Sigma}_y \end{cases}$$

$$\tau_{\rm HLT} \sim {\rm FS}(\xi, \zeta, \mu)$$
.



$$(\hat{\xi}, \hat{\zeta}) = \arg\min_{(\xi, \zeta)} \sum_{\nu=2}^{\infty} \left( m_{\nu}^{(FS)} - m_{\nu}^{(HLT)} \right)^{2}.$$

Akbari, V., S.N. Anfinsen, A.P. Doulgeris and T. Eltoft, G. Moser, S. B. Serpico, Polarimetric SAR Change Detection with the Complex Hotelling-Lawley Trace Statistic, IEEE Trans. Geosci. Remote Sens., vol. 54, no. 7, pp. 3953–3966, Mar. 2016.

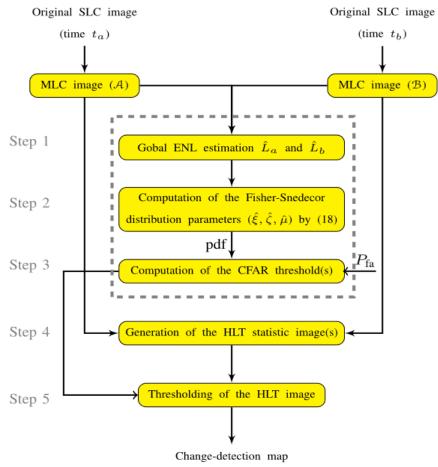


#### **HLT and CFAR-type thresholding**



- The HLT test is not CFAR, but we use the CFAR principle to determine the threshold.
- Find a global estimation of Lx and Ly
- Generate the HLT statistics image using

$$\tau_{\text{HLT}} = \text{tr}(\mathbf{Y}^{-1}\mathbf{X})$$
 and  $\tau'_{\text{HLT}} = \text{tr}(\mathbf{X}^{-1}\mathbf{Y})$ 




Compute the CFAR threshold for a specific Pfa

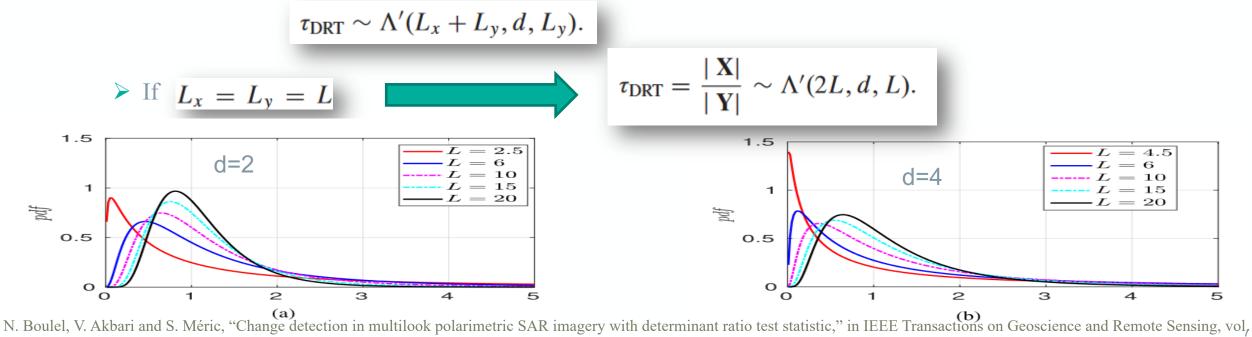
$$P_{\mathrm{fa}} = 2 \int_{T}^{+\infty} f_{\tau_{\mathrm{HLT}}}(\tau | H_0) \mathrm{d}\tau.$$

Apply the threshold and obtain the binary change detection map.

$$\max\left\{ au_{ ext{HLT}}, au_{ ext{HLT}}'
ight\} igotimes_{H_0}^{H_1} T.$$



#### 3) Similarity Measures: Determinant Ratio Test




Determinant ratio test (DRT) statistic

$$\tau_{\text{DRT}} = \frac{|L_x \mathbf{X}|}{|L_y \mathbf{Y}|}.$$

$$\begin{cases} H_0: \mathbf{\Sigma}_x = \mathbf{\Sigma}_y \\ H_1: \mathbf{\Sigma}_x \neq \mathbf{\Sigma}_y \end{cases}$$

- Distinct ENLs  $L_x \neq L_y$
- The exact distribution of the DRT statistic is Wilks's lambda distribution of the second kind



60, pp. 5200515-5200515, 2022.

#### **DRT** and **CFAR** Thresholding

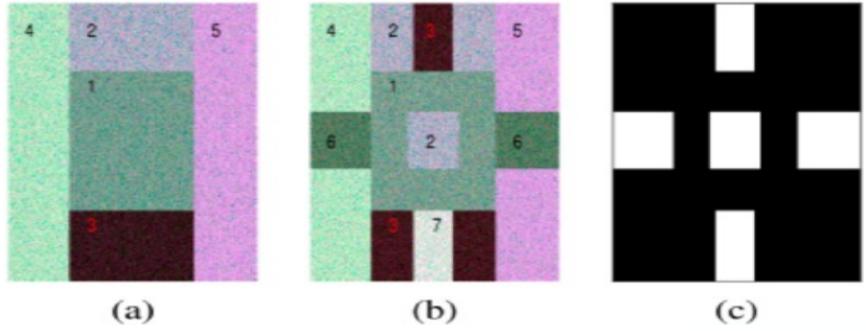


- Find a global estimation of Lx and Ly
- Generate the DRT statistics image using

$$\tau_{\text{DRT}} = \frac{|L_x \mathbf{X}|}{|L_y \mathbf{Y}|}, \text{ and } \tau'_{\text{DRT}} = \frac{|L_y \mathbf{Y}|}{|L_x \mathbf{X}|}.$$



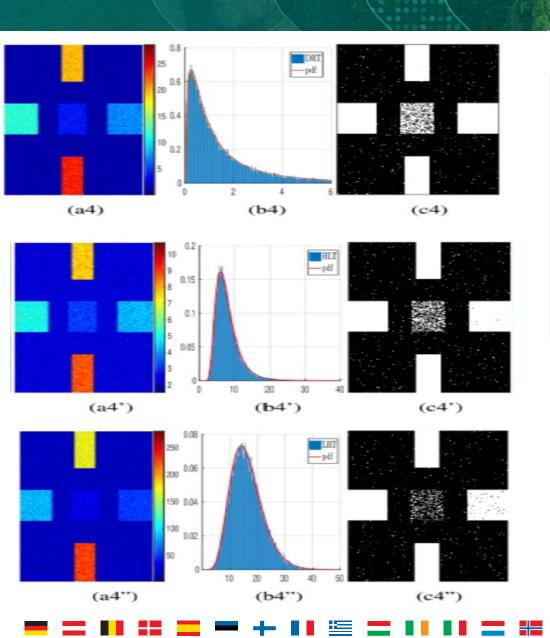
Compute the CFAR threshold for a specific Pfa


$$P_{\text{fa}} = 2 \int_{T}^{+\infty} f_{\tau_{\text{DRT}}}(\tau | H_0) d\tau.$$

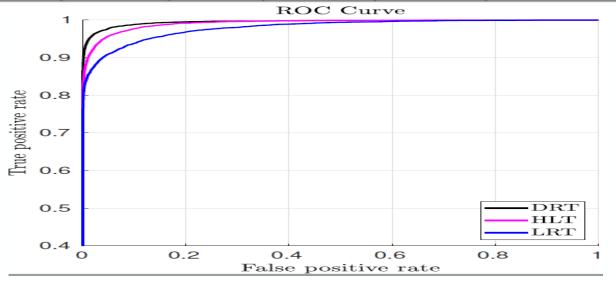
Apply the threshold and obtain the binary change detection map.

$$\max\left\{ au_{\mathrm{DRT}}, au_{\mathrm{DRT}}'\right\} \overset{H_1}{\underset{H_0}{\gtrless}} T.$$

## Experimental Results: Simulated PolSAR data







| Area | $\{\Sigma_{11}, \Sigma_{22}, \Sigma_{33}, \Sigma_{44}, \Sigma_{12}, \Sigma_{13}, \Sigma_{14}, \Sigma_{23}, \Sigma_{24}, \Sigma_{34}\} \times 10^{-3}$ |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | 2.6, 0.6, 0.6, 2.9, 0, 0, 0.9-1.2i, 0, 0, 0                                                                                                           |
| 2    | 11.9, 1, 1, 7.7, 0, 0, -2.1-3.6i, 1, 0, 0, 0                                                                                                          |
| 3    | 0.28, 0.007, 0.007, 0.073, 0, 0, 0.13-0.004i, 0, 0, 0                                                                                                 |
| 4    | 6.7, 6, 6, 11.2, 0, 0, 2.2+0.8i, 0, 0, 0                                                                                                              |
| 5    | 27.3, 0.6, 0.6, 12, 0, 0, 14.2-6.4i, 0, 0, 0                                                                                                          |
| 6    | 1, 0.2, 0.2, 0.8, 0, 0, 0.5-i, 0, 0, 0                                                                                                                |
| 7    | 8.9, 5.5, 5.5, 26.1, 0, 0, -1.1+0.2i, 0, 0, 0                                                                                                         |

### Experimental Results: Simulated PolSAR data (L=8)





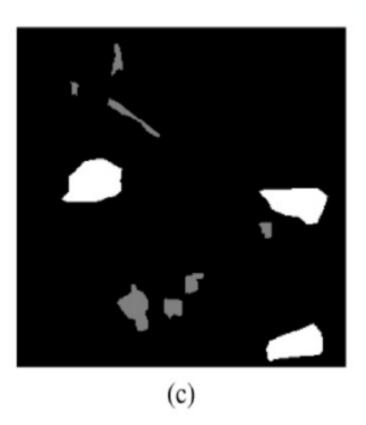
| Specified FAR(%) | Method        | Measured                                                                   | Detection                                                                                                             | Overall error                                                                                                                                                        |
|------------------|---------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FAR(%)           |               |                                                                            | Detection                                                                                                             | Overall circl                                                                                                                                                        |
|                  |               | FAR (%)                                                                    | rate (%)                                                                                                              | rate (%)                                                                                                                                                             |
| 0.5              | DRT           | 0.46                                                                       | 92.86                                                                                                                 | 1.94                                                                                                                                                                 |
| 0.5              | HLT           | 0.58                                                                       | 87.97                                                                                                                 | 3.12                                                                                                                                                                 |
|                  | LRT           | 0.44                                                                       | 83.23                                                                                                                 | 4.07                                                                                                                                                                 |
| 1                | DRT           | 1.00                                                                       | 94.60                                                                                                                 | 1.98                                                                                                                                                                 |
|                  | HLT           | 1.13                                                                       | 90.33                                                                                                                 | 3.02                                                                                                                                                                 |
|                  | LRT           | 0.95                                                                       | 85.25                                                                                                                 | 4.02                                                                                                                                                                 |
| 5                | DRT           | 5.22                                                                       | 97.88                                                                                                                 | 4.53                                                                                                                                                                 |
| 3                | HLT           | 5.07                                                                       | 95.79                                                                                                                 | 4.88                                                                                                                                                                 |
|                  | LRT           | 5.02                                                                       | 90.97                                                                                                                 | 5.91                                                                                                                                                                 |
| 10               | DRT           | 10.23                                                                      | 98.85                                                                                                                 | 8.21                                                                                                                                                                 |
| 10               | HLT           | 9.77                                                                       | 97.65                                                                                                                 | 8.12                                                                                                                                                                 |
|                  | LRT           | 10.18                                                                      | 93.89                                                                                                                 | 9.27                                                                                                                                                                 |
|                  | 0.5<br>1<br>5 | 1 DRT HLT LRT  1 DRT HLT LRT  5 DRT HLT LRT  DRT HLT LRT  HLT LRT  HLT LRT | 0.5 HLT 0.58<br>LRT 0.44  1 DRT 1.00 HLT 1.13 LRT 0.95  5 DRT 5.22 HLT 5.07 LRT 5.02  10 DRT 10.23 HLT 9.77 LRT 10.18 | 0.5 HLT 0.58 87.97 LRT 0.44 83.23  1 DRT 1.00 94.60 HLT 1.13 90.33 LRT 0.95 85.25  5 DRT 5.22 97.88 HLT 5.07 95.79 LRT 5.02 90.97  10 DRT 10.23 98.85 HLT 9.77 97.65 |

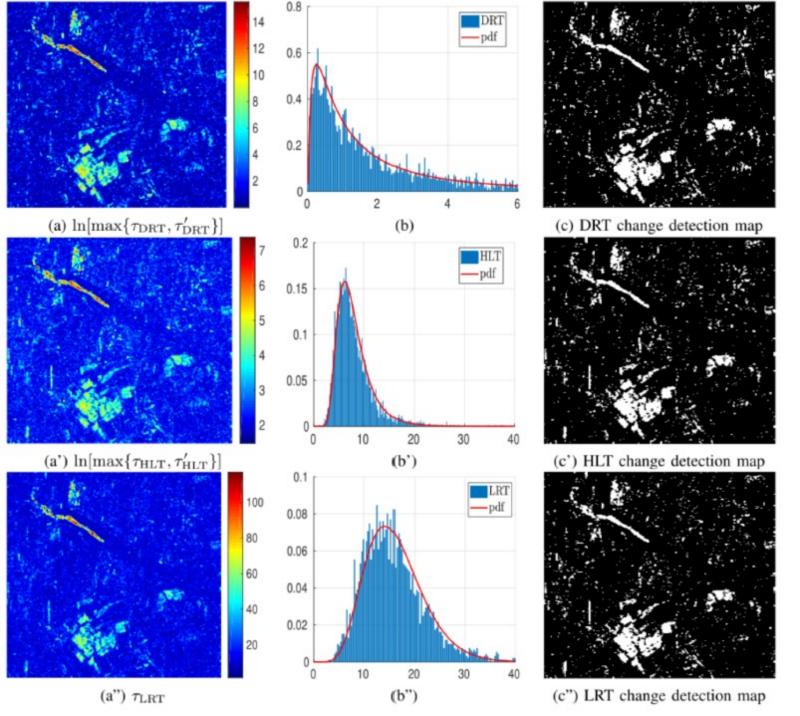


## Experimental Results: RADARSAT-2 Images (L=24)



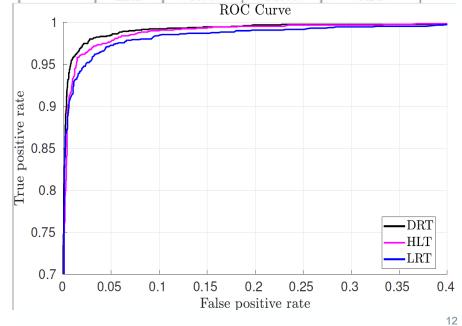
24 looks, Lx=7.2, Ly=6.9


T1: April 2009


(a)

T2: June 2010




**Ground Truth** 







| Specified FAR(%) | Method | Measured<br>FAR (%) | Detection<br>rate (%) | Overall error<br>rate (%) |
|------------------|--------|---------------------|-----------------------|---------------------------|
| 0.5              | DRT    | 0.91                | 95.53                 | 1.98                      |
| 0.5              | HLT    | 0.61                | 90.90                 | 3.16                      |
|                  | LRT    | 1.11                | 92.50                 | 3.03                      |
| ,                | DRT    | 1.40                | 96.36                 | 2.07                      |
| 1                | HLT    | 1.10                | 93.56                 | 2.71                      |
|                  | LRT    | 1.73                | 94.17                 | 2.96                      |
| 5                | DRT    | 5.24                | 98.63                 | 4.07                      |
| 5                | HLT    | 4.03                | 97.42                 | 3.59                      |
|                  | LRT    | 5.70                | 97.50                 | 4.74                      |
| 10               | DRT    | 9.60                | 99.24                 | 6.94                      |
| 10               | HLT    | 7.03                | 98.56                 | 5.35                      |
|                  | LRT    | 9.77                | 98.41                 | 7.31                      |



→ THE EUROPEAN SPACE AGENCY

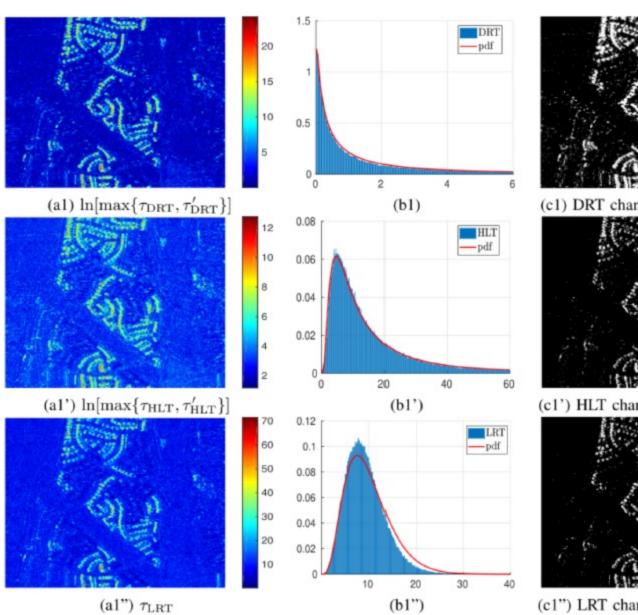
## Experimental Results: UAVSAR Images (L=6)



T1: April 2009

(a)

T2: May 2015




**Ground Truth** 



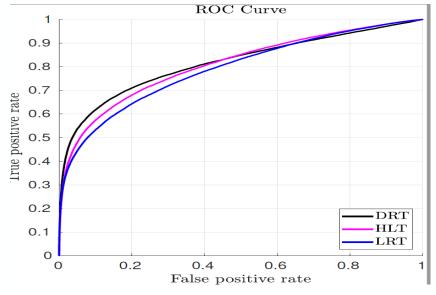
## Experimental Results: UAVSAR Images (L=6)







(c1) DRT change detection map




(c1') HLT change detection map



(c1") LRT change detection map

| Specified | Methods | Measured | Detection | Overall error |
|-----------|---------|----------|-----------|---------------|
| FAR(%)    |         | FAR (%)  | rate (%)  | rate (%)      |
|           |         | Scene 1  |           |               |
| 0.5       | DRT     | 1.71     | 40.77     | 10.65         |
|           | HLT     | 0.40     | 18.57     | 12.99         |
|           | LRT     | 0.41     | 20.26     | 12.74         |
| 1         | DRT     | 2.43     | 45.16     | 10.58         |
|           | HLT     | 0.74     | 24.64     | 12.34         |
|           | LRT     | 0.64     | 24.40     | 12.29         |
| 5         | DRT     | 6.78     | 57.06     | 12.41         |
|           | HLT     | 3.39     | 42.96     | 11.72         |
|           | LRT     | 2.74     | 37.95     | 11.96         |
| 10        | DRT     | 11.37    | 63.38     | 15.30         |
| 10        | HLT     | 7.16     | 52.83     | 13.38         |
|           | LRT     | 6.04     | 46.65     | 13.39         |



#### Conclusions



Summary of the detectors and their characteristics

| Characteristics            | LRT                             | HLT                             | DRT                                    |
|----------------------------|---------------------------------|---------------------------------|----------------------------------------|
| One sided or two sided     | One sided                       | Two sided                       | Two sided                              |
| Statistical modeling       | Approximate modeling            | Approximate modeling            | Exact distribution                     |
| Performance                | fails for small number of looks | fails for small number of looks | Works better for small number of looks |
| Change detection direction | No                              | Yes                             | Yes                                    |

• Future Work:

Extention of the method to model texture in the data

Omnibus test to mesure equality of several covariance matrices

$$\mathbf{A} \sim \mathcal{RW}_d^{\mathbb{C}}(L_a, \Sigma_a)$$
 and  $\mathbf{B} \sim \mathcal{RW}_d^{\mathbb{C}}(L_b, \Sigma_b)$ .

 $H_0: \Sigma_a = \Sigma_b$  and  $L_a = L_b$ ,

 $H_1: \Sigma_a \neq \Sigma_b$  or/and  $L_a \neq L_b$ .







an Open Access Journal by MDPI

#### Applications of SAR for Environment Observation Analysis

#### **Guest Editors**

Dr. Vahid Akbari, Dr. Nizar Bouhlel, Dr. Alireza Tabatabaeenejad, Prof. Dr. Esra Erten

#### Deadline

30 September 2023



Invitation to submit

mdpi.com/si/168242





# Change Detection in Multilook Polarimetric SAR Imagery with Hotelling-Lawley/Trace and Determinant Ratio Test Statistics

## Thank you for your attention

Vahid Akbari
The University of Stirling vahid.akbari@stir.ac.uk

POLINSAR AND BIOMASS 2023, Toulouse, 19th June 2023

ESA UNCLASSIFIED - For ESA Official Use Only