

A Novel Crop Classification Method Based on ppfSVM Classifier with Time-series Alignment Kernel from Dual-polarization SAR Datasets

Reporter: Han Gao

China University of Petroleum (East China)

ESA UNCLASSIFIED - For ESA Official Use Only

Introduction

Crop type mapping with remote sensing technology

Advantage of Radar Sensing Technology

Manual investigation

High measurement accuracy in small-scale parcels.

Low efficiency

Strong subjectivity and low confidence

Optical Remote Sensing

Fast monitoring in large scale parcels

Multi-spectral data, sensitive for the Physicochemical parameters

Susceptible to cloudy weather, hard to continuously monitor crop growth

Radar Remote Sensing

Fast monitoring in large scale parcels

Microwave data, sensitive for the structure and permittivity properties.

All daylight and all weather conditions, able to continuously monitor crop growth.

→ THE EUROPEAN SPACE AGENCY

PolSAR Technology

Time Series PolSAR observation for crops

Main PolSAR Satellites in 2000 - 2023

·eesa

→ THE EUROPEAN SPACE AGENCY

Crop Classification methods with Time series PolSAR data Cesa

The stack of features

Time series features

Phenological knowledge or time-varying characteristic

Machine learning algorithms

Maximum Likelihood	Decision Tree & Random Forest				
Wishart-pdf \rightarrow C3	(Huang et al., 2017; Waske et al, 2009)				
Gaussian-pdf \rightarrow F	' 				
(Skriver, 2012; Hoekman, 2003)	Support Vector Machine				
	l (Sonobe et al., 2015; Shuai et al., 2019)				
Neural Network (Ndikumana et al., 2018)					
Ensemble Learning (Peijun Du, Nanjing University)					

Drawbacks:

these methods have not revealed the dynamical characteristics of SAR datasets in the temporal dimension

Introduction of Phenology Information

- **1) Feature selection** Hariharan et al. (2018)
- 2) phenology pattern Bargiel (2017)
- 3) Hidden Markov Model Leite et al., 2011)
- 4) Conditional Random Field Kenduiywo et al., 2017

Drawbacks:

- 1) High cost of time series phenological measures collections;
- 2) Ignore the phenological unalignment situation. (Kenduiywo et al., 2017).

Classification with time series alignment algorithm

Euclidean distance (*Xu et al., 2019*)

DTW distance (*Petitjean, 2012*)

TWDTW distance (Maus et al., 2016)

Frechet distance (Gao, 2020)

LCSS distance (Han Su, 2019)

ERP distance (Han Su, 2019)

9

→ THE EUROPEAN SPACE AGENCY

Phenology Unalignment Phenomenon

Definition:

- caused by the random variations of agroclimatic conditions and agricultural practices, which is
 presented as the time-series unalignment of different parcels from a give crop type.
- two neighboring parcels of the same type may have different phenological evolutions.

→ THE EUROPEAN SPACE AGENCY

DTW Alignment Algorithm

Dynamic Time Warping Alignment:

It searches for a global optimal matching path under the boundary and monotonicity constraints, and allows time-varying curves to be locally shifted, contracted and stretched (Zhao and Itti, 2018).

·eesa

Traditional Classification Scheme

Nearest Neighbor (NN) Classification with time series alignment similarity

Existing Problems of Crop Classification

DTW alignment is a point-to-point matching, which is unreliable, leading to perceptually nonsensible alignments. (Singularities behaviors, one point to multiple points).

💻 📰 📰 💶 🚥 🕂 🛛 🔚 🔚 🔚 📰 👬 📰 👬 🔤 🚛 🚳 🍉 🚺 🚼 📰 🗰 🚳 🎃 🖬

Our Innovations

14

The Classification Method Based on ppfSVM Classifier with Time-series Alignment Kernel from Dual-polarization SAR Datasets

02

Methodology

Innovation 1: TWshapeDTW alignment

16

→ THE EUROPEAN SPACE AGENCY

TWDTW

(1) point-to-point \rightarrow shape descriptors (zhao, 2018) $|\bar{u}_i - \bar{v}_i|$ $||sq_i^{\overline{U}} - sq_i^{\overline{V}}||$

shapeDTW *Improvement:* Use the neighbor information of sub-sequence to improve the alignment accuracy.

Improvement: Add the temporal constraint to avoid the unreasonable alignment.

Innovation 1: TWshapeDTW alignment

Shape similarity (between two z-normalized curves)

$$\delta_{SS} = \frac{1}{K} \sum_{(i,j) \in P} \left(\sqrt{\left\| sq_i^{\overline{U}} - sq_j^{\overline{V}} \right\|_2 / l} + w_{i,j} \right)$$

Describe the similarity of crop growth and change.

Share the same path.

Feature similarity (between two original curves)

$$\delta_{FS} = \frac{1}{K} \sum_{(i,j) \in P} \left(\sqrt{\left(u_i - v_j\right)^2} + w_{i,j} \right)$$

Describe the similarity of microwave signals.

🗮 🔜 📲 🚍 💳 🕂 📲 🧮 🚍 📲 📕 📰 🚝 🚝 📟 🚳 🖿 📲 🗮 🚥 🚳

Total technology scheme

→ THE EUROPEAN SPACE AGENCY

·eesa

03

Study Area and Data

Study Area and Data

Parameters	Information			
Satellite	Sentinel-1A			
Path	128			
Flight Direction	Ascending			
Polarization Mode	VH + VV			
Center incidence Angle	39.11 °			
Azimuth Pixel Spacing	13.94 m			
Range Pixel Spacing	2.33 m			
Available Dates	20180303, 20180315, 20180327, 20180408, 20180420, 20180514, 20180526, 20180607, 20180619, 20180701, 20180713, 20180725, 20180818, 20180911, 20180923, 20181005, 20181017, 20181110, 20181204, 20181216, 20181228, 20190310, 20190322, 20190403, 20190415, 20190427, 20190521, 20190602, 20190614, 20190801, 20190813, 20190825, 20190906, 20190918, 20190930, 20191012, 20191024, 20191105, 20191117,20191129, 20191211, 20191223.			

→ THE EUROPEAN SPACE AGENCY

Study Area and data

22

💳 💶 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🔤 🛻 🚳 🍉 📲 👫 📲 🖬 📾 🛤 🛤 🌬 👫 → THE EUROPEAN SPACE AGENCY

Training Samples

Testing Samples

Time-varying Feature Curves

→ THE EUROPEAN SPACE AGENCY

04

Results and Discussions

Our Classification Results

· eesa

The Comparison with Our Method and Other Classification Methods (Overall Accuracy)

	Year	DS-TWshapeDTW- ppfSVM	SVM	DS-TWshapeDTW-NN	SS-TWDTW-NN
	2018	90.73 %	87.60%	80.04%	77.15%
OA	2019	92.08 %	91.01%	83.73%	79.98%
kappa	2018	0.8878	0.8512	0.7633	0.7305
	2019	0.8962	0.8814	0.7923	0.7471

The Comparison with Our Method and Other Classification Methods (Classification Error Maps)

The Comparison with Our Method and Other Classification Methods (Typical Cases)

Considering the time series alignment, the parcel can be correctly discriminated <u>as onion</u>.

30

| 🚍 💳 🕂 📲 🔚 🔚 🧮 📰 📲 📰 🛶 🕼 🕨 📲 🚼 🛨 🖬 ன International Space Agency

The Comparison with Our Method and Other Classification Methods (Typical Cases)

Considering the time series alignment + ppfSVM classifier the parcel can be correctly discriminated as wheat2.

31

🔚 🚃 🖛 🕂 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🔤 👘 🚳 🍉 📲 👫 📲 🖬 🖬 📾 🕸 🍁 🔸 THE EUROPEAN SPACE AGENCY

The Comparison with Our Method and Other Classification Methods (Robustness)

→ THE EUROPEAN SPACE AGENCY

The Comparison with Different Time Series Alignment

	Year	TWshapeDTW	TWDTW	shapeDTW	DTW
	2018	90.73 %	89.00%	87.62%	85.33%
OA	2019	92.08 %	90.19%	91.26%	88.22%
	2018	0.8878	0.8672	0.8514	0.8235
kappa	2019	0.8962	0.8726	0.8853	0.8465

📕 🔜 📕 🚛 💶 🛶 📲 🔚 🔚 🔚 🔜 👬 🔚 🔜 🛻 🚳 🛌 📲 🚼 🖬 🖬 🗰 🖗 🖓

The Influence of Various Features on Classification

	Year	All Features	σ_{VV}	σ_{VH}	Н	α	r _{HVVV}
	2018	90.73 %	80.51%	73.59%	79.90%	80.76%	79.57%
OA	2019	92.08%	88.25%	74.91%	82.54%	82.31%	81.52%
kappa	2018	0.8878	0.7657	0.6813	0.7587	0.7693	0.7548
	2019	0.8962	0.8466	0.6816	0.7754	0.7716	0.7623

- 💶 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 🔚 📲 🚟 📥 🚳 🍉 📲 🚼 🖬 📾 📾 📾 🌬 👘 → THE EUROPEAN SPACE AGENCY

The Sensitivity of Classification Methods to the Number of Features

💳 📰 📰 💳 🕂 📲 🔚 📰 🔚 📰 🔚 📰 🔚 🔤 🔤 🚱 🚱 🚱 👘 🖓

The Sensitivity of Classification Methods to the Inter-correlation of Features

Table The inter-correlation of different features

	σ_{VV}	σ_{VH}	Н	α	r _{HVVV}
σ_{VV}	1	0.86	0.81	0.81	0.91
σ_{VH}	0.86	1	0.53	0.53	0.64
Н	0.81	0.53	1	1	0.91
α	0.81	0.53	1	1	0.90
r _{HVVV}	0.91	0.64	0.91	0.90	1

💶 📲 💶 🚥 🕂 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🔤 🔤 🚳 🚱

05

Conclusion

Conclusions

A novel crop classification method based on the ppfSVM classifier with the TWshapeDTW alignment kernel is proposed.

• It establishes a **bridge** connecting multi-temporal PolSAR data and crop classification, and successfully **combines** the time series alignment and machine learning algorithms to improve classification ability.

• Compared with different classification methods, the proposed method can achieve the **highest OA** and the **best robustness** under different numbers of the training sample. It can be used in the **large-scale crop type mapping**.

Thanks for the attention !

If you are interested in our work or the corresponding codes, welcome to contact me !

Han Gao, gaohangeo@upc.edu.cn,

China University of Petroleum (East China)

Experimental details can be seen in following articles:

- 1. <u>Gao H.</u>, Wang C., Wang G., et al. A Novel Crop Classification Method Based on ppfSVM Classifier With Time-series Alignment Kernel From Dual-polarization SAR Datasets[J]. Remote Sensing of Environment, 264: 112628.
- 2. <u>Gao H.</u>, Wang C., Wang G., et al. A New Crop Classification Method Based on the Time-Varying Feature Curves of Time Series Dual-Polarization Sentinel-1 Data Sets[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(7): 1183-1187.
- 3. Wang, C., Ding L., **Gao, H.***, Lu L. Phenology Alignment-based PolSAR Crop Classification Considering Polarimetric Statistical and Time-Varying Curve Characteristics. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 2501905

PIC

■ 📲 🊔 → THE EUROPEAN SPACE AGENCY