

Calibration and Validation of EOS-04 Hybrid Polarimetric ScanSAR Data

Presented By: P.V. Jayasri Scientist/Engineer-SF NRSC / ISRO

Co-Authors: Samvram Sahu, K. Niharika, Dr. Y. Ramu, H.S.V. Usha Sundari Ryali, E.V.S. Sita Kumari

Indian Space Research Organization Department of Space, India

ESA UNCLASSIFIED - For ESA Official Use Only

Introduction

Over past many years, Synthetic Aperture Radar (SAR) imaging has received considerable attention due to its unique capabilities to provide day and night measurements, almost independent of atmospheric conditions.

Polarimetric SAR data has the potential to exploit many applications including:

- (i) Agriculture (crop classification, soil moisture, crop assessment)
- (iii) Forestry (forest monitoring, classification)

- (ii) Oceanography (surface currents and wind field retrieval)
- (iv) Disaster monitoring (oil spill detection, disaster assessment)
- (v) Strategic applications (ship detection, target recognition/classification).

Capabilities of EOS-04 (follow-on mission of RISAT-1 – C-band SAR):

- Imaging Modes: Stripmap, ScanSAR and Sliding-Spotlight
- Polarizations: Single, Dual, Compact (CP) & Full (FP)
- Swath Coverage: 10 Km to 223 Km
- Spatial Resolutions: 1m to 50m
- Interferometric Mode Experimental

Earth Observation Satellite - 4 (EOS-04)

→ THE EUROPEAN SPACE AGENCY

State-of-the-Art:

- RISAT-1(C-band) launched by ISRO in 2012 is first of its kind in Earth Observation Satellite to have Hybrid Polarimetry on-board.
- ScanSAR mode of Operation of EOS-04 offering Hybrid and Full polarimetric measurements to the user community.

Motivation:

To provide calibrated and validated data products to support User community with the continuity to exploit Hybrid Polarimetric data having long term stability and data integrity.

Objective:

Performing SAR Calibration and Validation of EOS-04 Stripmap and ScanSAR Hybrid polarimetric data.

To implement different polarimetric decomposition techniques by deriving Stokes Parameters and performing sensitivity analysis on standard radar targets.

ISRO's Earth Observation Programme Satellite Life Cycle and Role of Ground Segment

ISRO EO DATA PROCESSING for EOS-04

Integrated Multi-Mission Ground Segment for EO Satellites (IMGEOS)

Salient Features:

- World class state-of-the-art data centre with three-tier Storage Area Network (SAN)
- Enhanced user services with online data ordering & dissemination.
- Data availability with minimum latency for processing (24 x 7 Operations)

EOS-04(C-band SAR) – Launched on 14th Feb 2022

			Standard Data Products
	EOS 04 Imaging Madage	Level -0	Raw Signal Product (Generic Binary)
	 Fine Resolution StripMap (FRS-1) Coarse Resolution ScanSAR(CRS) Medium Resolution ScanSAR(MRS) Full Polarimetric StripMap (FRS-2) High Resolution Spotlight(HRS) 	Level-1	Slant Range Geo-Tagged Product Ground Range Products (CEOS/Geotiff)
		Level-2 Georef	Enhanced Terrain corrected Geo Referenced Product (Geotiff)
FRS1/FRS2 MODE			Value Added Products
524.87 km HRS MODE CRS MODE	EOS-04 (C-band SAR) has come up with:	Level-1C	Geo-tagged Polarimetric products
	 ✓ Medium Resolution ScanSAR (MRS) – 8 beams ✓ Course Resolution ScanSAR(CRS) - 12 beam configuration 	Level-3A	Geo-referenced Polarimetric products
MRS MODE	 ✓ Swath Coverage :163 km and 223km for MRS and CRS respectively ✓ Spatial resolution: 8 to 50m 	Mosaic	India Mosaic (for systematic coverage) Large Area Mosaic

Parameters	Specifications	
Altitude	524.87 km	
Orbit	Sun synchronous (6 AM -descending / 6 PM equatorial crossing)	
Frequency	5.4 GHz <u>+</u> 37.5 MHz	
Polarization Combination	Single / Dual / Full /Hybrid polarimetry	
Antenna Roll Bias (deg)	± 36°	
Range Coverage (Km)	100-650 (either side of flight track)	
Look Angle (deg)	11.5 - 49.6	
Incidence Angle (deg)	12.4 - 55.5	

EOS-04	FRS-1	FRS-2	MRS	CRS
	(StripMap)	(StripMap)	(ScanSAR)	(ScanSAR)
Swath (km) * Full Pol	25 Km (*20)	25 km (*20)	160 km (*115)	223 km (*168)
Polarization	Single, Dual	Single, Dual,	Single, Dual,	Single, Dual,
	Circular, Full Pol	Circular, Full Pol	Circular, Full Pol	Circular, Full Pol
Resolution Az. x Slant Range(m)	3 x 2	3 x 4	33 x 8	50 x 8
Worst Sigma Naught (dB)	≤ -18	≤ -19	≤ -18	≤ -18
Off-Nadir (km)	100 – 650	100-650	100 – 650	100 – 650
* Full Pol	(*100-400)	(*100 – 400)	(*100 – 400)	(*100 – 400)

evel-1	Slant Range Geo-Tagged Product Ground Range Products (CEOS/Geotiff)	
evel-2	Enhanced Terrain corrected Geo	
eoref	Referenced Product (Geotiff)	
Value Added Products		
evel-1C	Geo-tagged Polarimetric products	
evel-3A	Geo-referenced Polarimetric products	
osaic	India Mosaic (for systematic coverage) Large Area Mosaic	
Projection: UTM (Level-2) Datum : WGS84 (Level-2) Resampling : CC (Level-2)		

Product Specifications	Value
Geo-location Accuracy(RMSE)	<50 m
Radiometric Resolution (SLC)	3.1 dB
PSLR	-17 dB
Relative Radiometric Accuracy	1 dB
Absolute Radiometric Accuracy	±1dB

EOS-04 Data Products and Dissemination

Sample EOS-04 Images

Systematic Collections in ScanSAR 6 mode (33m) in 17days over India

SAR Cal-Val Activities at ISRO- PAN India CR Network

- ISRO has established permanent and campaign mode Calibration Sites with an objective:
- To perform radiometric, geometric and polarimetric calibration of space borne and airborne SAR sensors operating in:
 - Multi-frequency (L, S, C and X bands)
 - Multi-polarizations (Single/Dual/Hybrid/Full Pol)
- To derive SAR Image Quality Metrics for data product validation

Permanent Sites: NRSC-IMGEOS, SAC-Ahmedabad, Antarctica Campaign mode Sites: Desalpur, Amarapur, IIST Campus

EOS-04 Fine Resolution Stripmap data

Impulse Response Function for point target

Indigenously developed Wideband Active Radar Calibrator (ARC) (L, S, C & X band)

CRs deployed in ISRO Cal Site in Campaign Mode

CR deployed at Antarctica during 2021-2022

Orientation of 100cm Dihedral CR

CRs

deployed at SAC/ISRO

Geometric Accuracy and Point Target Analysis of ScanSAR Data

Impulse Response Function of Point Target

eesa

Methodology / Algorithm Implemented

- EOS-04 Hybrid polarimetric Single Look Complex (SLC) data corresponding to Stripmap and ScanSAR in performing validation of polarimetric parameters using point target and distributed targets.
- ✓ ScanSAR SLC data contains burst wise complex data for each polarization.

 $S_{0} = \left\langle \left| RH \right|^{2} + \left| RV \right|^{2} \right\rangle$ $S_{1} = \left\langle \left| RH \right|^{2} - \left| RV \right|^{2} \right\rangle$ $S_{2} = 2\Re \left\langle RH \cdot RV^{*} \right\rangle$ $S_{3} = -2\Im \left\langle RH \cdot RV^{*} \right\rangle$

Stokes Vector: (RH-RV Case, BSA Convention)

Details of Datasets:

Imaging Mode: Medium Resolution ScanSAR(MRS)

 Fine Resolution Stripmap (FRS-1)

 Standard Radar Targets: Trihedral/Dihedral Corner Reflectors
 Level of the data product: Single Look Complex (SLC)
 Study Area: Calibration data acquired over ISRO Cal-Val site
 Software: In-house developed Cal-Val Software

Stokes Parameters: (RH-RV Case, BSA Convention)

■ 🙆 🛌 📕 💥 🔚 🖬 📟 🔤 🔤 👘 → THE EUROPEAN SPACE AGENCY

ees

Hybrid Pol Parameter for Stripmap CR Data

Hybrid Pol Parameter for ScanSAR Point Target Data

Mosaicking of Burst Data:

Handling of intricacies related to extracting/processing of ScanSAR (8 to 12 beams) SLC data, while mosaicking in slant range domain (by preserving phase) to form a complete scene:

- ✓ Number of bursts
- First valid line
- ✓ Number of valid samples
- ✓ Minimum range of burst buffer
- Start and End Time of beam(seconds)

Typical Values derived from Standard Radar Targets

Stokes Child Parameters	Value
Degree of Polarization(m)	0.9958
Relative phase (δ) in deg	93.379
Ellipticity (χ) in deg	-42.87
Circular Polarization Ratio(CPR)	0.0034
Degree of Linear Polarization	0.074
Degree of Circular Polarization	-0.9972

Mosaicked scene in SLC domain

Observations:

- The relative phase component for burst data with overlap and without overlap between bursts is around 3 deg which is in acceptable range for exploiting MRS Hybrid Pol Data.
- Significant improvement is observed between Calibrated and Un-Calibrated data with ± 4 to 6 deg variation in Relative phase and 2 to 3 deg in Ellipticity.
- Stokes vector and its derived value added parameter based decompositions are well demonstrated with corner reflectors as they aid in characterizing target properties based on dominant basic scattering mechanism.

EOS -04 ScanSAR MRS Data Over Amazon – EAP Analysis (Distributed Target Analysis)

Date Of Pass=07-JUL-2022 Imaging OrbitNo=2176 ASCENDING / LEFT , Incidence Angle=31.95438 Gamma 0 analysis is performed on ScanSAR MRS Hybrid Pol Data acquired over Amazon Rain Forest to estimate Elevation Antenna Profile.

·eesa

→ THE EUROPEAN SPACE AGENCY

Absolute Radiometric Accuracy is within ± 1 dB as per the specification

Conclusion

- ISRO's Ground Segment Activities and Payload capabilities of EOS-04 with its unique Hybrid Polarimetric feature in ScanSAR imaging mode is discussed.
- □ ISRO's SAR Calibration and Validation Facility and its Activities
- Radiometric, Geometric and Polarimetric calibration and Validation performed using Point Target and Distributed Target Analysis and the image quality metric are as per specifications.
- Absolute Radiometric Accuracy is within ± 1 dB as per the specification
- EOS-04 Hybrid polarimetric data has been analyzed and processed for different standard point targets like corner reflectors using Stokes parameter based decomposition techniques.
- Stokes vector and its derived value added parameter based decompositions are well demonstrated with corner reflectors as they aid in characterizing target properties based on dominant basic scattering mechanism.
- Significant improvement is observed between Calibrated and Un-Calibrated data with ± 4 to 6 deg variation in Relative phase and 2 to 3 deg in Ellipticity.
- EOS-04 operational Hybrid Polarimetric Level-3A data products (M-delta and M-chi decomposed data products) can be used to exploit land and ocean applications
- Calibration and Validation of ScanSAR mode Hybrid Polarimetric data products will upscale polarimetric based applications having larger swath coverages.

13

Bibliography

- F.J. Charbonneau, B. Brisco, R.K. Raney, H. McNairn, C. liu, P.W. Vachon, J. Shang, R. DeAbreu, C. Chmapagne, A. Merzouki and T. Geldsetzer 2010. "Compact polarimetry overview and applications assessment", *Canadian Journal of remote sensing*, vol.36, suppl.2, pp S298-S315.
- R. Keith Raney, "Hybrid-Polarity SAR Architechure", *IEEE Transaction on Geoscience and Remote Sensing*, Vol.45, No.1, Nov 2007.
- R. Touzi, "Compact-hybrid versus linear-dual and fully polarimetric SAR", Proc. of 4th International Workshop on Science and Applications of SAR polarimetry and polarimetric Interferometry- PolInSAR 2009', 26-30 January 2009, Frascati, Italy (ESA SP-668, April 2009).
- Jayasri P.V., Usha Sunadri HSV, Sita Kumari EVS, Prasad AVV 2013, M-delta decomposition of Hybrid Dual Polarimetric RISAT-1 SAR Data, 9th International Radar Symposium India(IRSI-2013).
- "EOS_04_Data_Products_Format_Document_v1.2_2", <u>http://www.nrsc.gov.in</u>.
- Tapan Misra, S.S. Rana, N.M. Desai, D.B. Dave, Rajeevjyoti, R.K. Arora, C.V.N. Rao, B.V. Bakori, R. Neelakantan, J.G. Vachchani 2013, "*Current Science*", Vol 104, No.4, Feb 2013.

Acknowledgements:

The authors are grateful for Indian Space Research Organization (ISRO) for providing the opportunity to present in PolInSAR-Biomass- 2023 workshop. Authors are thankful to ISRO Cal-Val, Data Processing and Payload Planning & Programing teams for their support and carrying out EOS-04 Calibration and Validation exercises.

Email: jayasri_pv@nrsc.gov.in

15