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POLARIMETRIC TIME SERIES CHANGE ANALYSIS
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Multidimensional Data
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Methods to jointly analyze multidimensional SAR data are of interest
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Canonical Polyadic (CP) Decomposition
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CP decomposition represents the tensor as a sum of components



Extending CP to SAR Data
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Standard CP decomposition
§ Same number set (ℂ, ℝ, ℝ!) for tensor and factors

§ Factors are vectors
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ℂ, PSD ℂ, PSD ℂ, PSD

Flexible factor shapes
à Allow matrices (or tensors) as factors

Flexible factor constraints
à Allow constraints for physical validity

CP decomposition requires extensions in order to preserve the structure of SAR data 



Polarimetric Time Series Decomposition

5

Time

Polarimetric time series with 
N coherency matrices

How to obtain the factors?

Data

Nx3x3 Tensor

→

Tensor

≈ + +

ℝ!

ℂ, PSD

ℝ! ℝ!

ℂ, PSD ℂ, PSD

Positive time factors,
Positive semi-definite (PSD)

rank-1 complex polarimetry factors

R components



Iterative Optimization
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Constrained decomposition factors can be obtained through optimization
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POLARIMETRIC CHANGE ANALYSIS
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CROPEX 2014 Campaign
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CROPEX 2014 Campaign
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Polarimetric Change Analysis
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Change matrix represents changes between each pair of acquisitions 
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More Detailed Change Detection
Corn, C Band
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Finer details are visible 
after the decomposition

+ +≈

Component weights 
indicate importance

Time factors offer 
simpler interpretation



More Detailed Change Detection
Corn, L Band
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Finer details are visible 
after the decomposition

Component weights 
indicate importance

Time factors offer 
simpler interpretation



EXTENSIONS
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Decomposing Different Data Dimensions
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Polarimetric 
time series

Polarimetry
+ Time

Multibaseline
multipolarization

matrix

Polarimetry
+ Structure

Polarimetric Time Series Decomposition

Sum of Kronecker Products (SKP) Decomposition
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ℂ, PSD ℂ, PSD

Joint analysis and decomposition of different data dimensions possible



Integration of Physical Models

Benefits of Model Integration
§ Simpler interpretation: Model-based components have a clear meaning
§ Parameter inversion: We obtain physical parameters
§ Larger observation space: More complex models possible
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Constraints
Unconstrained factors à Constrained factors

Physical Model
Physical parameters à Constrained factors



Summary

Constrained Tensor Decomposition Framework
ü Joint decomposition and analysis of different data dimensions
ü Physical validity enforced through constraints
ü Extensible framework obtains solution through optimization
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Thank You!
Questions?



BACKUP SLIDES
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Time Factor Analysis, Corn, L Band
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Corn time factors in L band show a correlation to crop height



Change Matrices for Different Crops
C Band
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Different crop types show different changes
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Change Matrices for Different Crops
L Band
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Different radar bands are sensitive to different scales
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Physical Models
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Physical models predict signal from parameters

Physical model

Physical parameters Predicted backscatter

𝜀! 𝜃

Bragg surface scattering model

Dielectrics & Incidence Predicted backscatter


