CONSTRAINED TENSOR DECOMPOSITIONS POLARIMETRIC TIME SERIES CHANGE ANALYSIS

Nikita Basargin, Alberto Alonso-González, Irena Hajnsek

Multidimensional Data

Methods to jointly analyze multidimensional SAR data are of interest

Canonical Polyadic (CP) Decomposition

CP decomposition represents the tensor as a sum of components

3

Extending CP to SAR Data

C, PSD

C, PSD

Standard CP decomposition

- Same number set (\mathbb{C} , \mathbb{R} , \mathbb{R}^+) for tensor and factors
- Factors are vectors

Flexible factor shapes

 \rightarrow Allow matrices (or tensors) as factors

Flexible factor constraints

 \rightarrow Allow constraints for physical validity

CP decomposition requires extensions in order to preserve the structure of SAR data

C, PSD

Polarimetric Time Series Decomposition

Polarimetric time series with N coherency matrices

Nx3x3 Tensor

Positive time factors, Positive semi-definite (PSD) rank-1 complex polarimetry factors

How to obtain the factors?

Iterative Optimization

Constrained decomposition factors can be obtained through optimization

POLARIMETRIC CHANGE ANALYSIS

CROPEX 2014 Campaign

CROPEX 2014 Campaign

Polarimetric Change Analysis

Change matrix represents changes between each pair of acquisitions

More Detailed Change Detection Corn, C Band

More Detailed Change Detection Corn, L Band

EXTENSIONS

Decomposing Different Data Dimensions

Polarimetric Time Series Decomposition

Sum of Kronecker Products (SKP) Decomposition

Joint analysis and decomposition of different data dimensions possible

Integration of Physical Models

Constraints Unconstrained factors \rightarrow Constrained factors

Physical Model
Physical parameters

Constrained factors

Physical parameters \rightarrow Constrained factors

Benefits of Model Integration

- Simpler interpretation: Model-based components have a clear meaning
- Parameter inversion: We obtain physical parameters
- Larger observation space: More complex models possible

Constrained Tensor Decomposition Framework

- \checkmark Joint decomposition and analysis of different data dimensions
- Physical validity enforced through constraints
- ✓ Extensible framework obtains solution through optimization

Thank You! Questions?

BACKUP SLIDES

17

Time Factor Analysis, Corn, L Band

Corn time factors in L band show a correlation to crop height

Change Matrices for Different Crops C Band

HH + VV HH – VV HV + VH

Different crop types show different changes

Change Matrices for Different Crops L Band

Different radar bands are sensitive to different scales

Bragg surface scattering model

Physical models predict signal from parameters