FHzürich

Antarctic sea ice elevation and roughness retrieval using polarimetric SAR interferometry

Lanqing Huang¹ and Irena Hajnsek^{1,2}

Institute of Environmental Engineering, ETH Zurich
 Microwaves and Radar Institute, DLR Oberpfaffenhofen

22/06/2022

0.Background

topography of the sea ice

- Sea ice is frozen ocean water floating on the ocean surface.
- The topography of the sea ice is dominated by ice ridges, shear zones, and hummocks, leading to an intermittent change of the ice topography.

Ridged sea ice [1]

Multi-year sea ice [1]

First-year sea ice [1]

[1] All About Sea Ice., National Snow and Ice Data Center., <u>https://nsidc.org/cryosphere/seaice/index.html</u>.

Remote Sensing

Lanqing Huang et al. | 22.06.2023 |

1. OTASC Data Sets

 Coordinated campaign between spaceborne TanDEM-X from DLR and airborne Operation IceBridge (OIB) optical data from NASA^[1];

- Western Weddell Sea on 29 October, 2017;
- **TanDEM-X SAR** from DLR: 9 spaceborne InSAR pairs;
- Digital Mapping System (DMS) sensor from NASA OIB aircraft.

[1] Nghiem, Son, et al. "Remote sensing of antarctic sea ice with coordinated aircraft and satellite data acquisitions." *IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium*. IEEE, 2018.

Earth Observation and

Remote Sensing

1. OTASC Data Sets - TanDEM-X

1. OTASC Data Sets - DMS data

DMS DEM is used as the reference data

2. Problem formulation

Objective: generate sea ice elevation (i.e., snow freeboard) from the single-pass InSAR data.

- Penetration of microwaves into old, thick, and deformed ice can be 0.3-1m^[1]
- Dry snow is transparent to X-band radar

Radar penetration into

snow and ice is negligible

•

3. Method

3. Method

Earth Observation and Remote Sensing

[1] Martti Hallikainen and Dale P Winebrenner, "The physical basis for sea ice remote sensing," Microwave remote sensing of sea ice, vol. 68, pp. 29–46 1992.

3. Method

Two-layer plus volume model^[1]

[1] Huang, Lanqing, Georg Fischer, and Irena Hajnsek. "Antarctic snow-covered sea ice topography derivation from TanDEM-X using polarimetric SAR interferometry." *The Cryosphere* 15.12 (2021): 5323-5344.

Lanqing Huang et al. | 22.06.2023

3. Method

4. Result

- Sea ice elevation (i.e., snow freeboard) derived using the proposed method
- Visual validation: SAR DEM vs DMS DEM

Earth Observation and Remote Sensing

Lanqing Huang *et al.* | 22.06.2023 |

4. Result

Quantitative validation ٠

DMS

W1-U 2 3

60°W

65°S

E *H zürich*

4. Result

Applying the proposed into over an extended region in Weddell and Ross Sea

- 162 TanDEM-X images ٠
- October-November in 2017 ٠

4. Result

Northwestern

W5-1

W5-L

Mean

elevation (m)

0.80

0.46

0.72

0.42

0.50

0.39

0.57

0.52

0.44

0.49

0.45

0.46

R1-L

R5

Mean

roughness (m)

0.19

0.12

0.19

0.12

0.11

0.12

0.18

0.16

0.11

0.18

0.11

0.10

.

Weddell sea

Regional variation of sea ice topography

- Roughness: the standard deviation of the elevation within a 50×50m area
- Ice chart: US. National Ice Center

- Sea ice in the northwestern Weddell Sea exhibits higher averaged elevations (>0.5m) than the southeastern region and Ross Sea.
- Topographic values (i.e., elevation and roughness) are consistent with the ice types, where exhibit a substantial proportion (>57%) of MYI.

5. Recap

- Proposed a method to retrieve sea ice elevation (i.e., snow freeboard) from dual-polarization interferometric SAR images, taking into account the significant variation in penetration bias across different ice types.
- The proposed method was applied to a broad area spanning the Weddell Sea and the Ross Sea
 - Sea ice undergoes significant deformation nearby the eastern AP.
 - Sea ice in the northwestern Weddell Sea exhibits higher averaged elevations than the southeastern region
 - Sea ice topography provide additional information to sea ice classification mapping

Thank you !

0.Background

Why needs SAR?

- High spatial resolution at meter scales
- Regardless of cloud cover, darkness, and weather conditions
- Invaluable for monitoring ocean and remote areas, particular for polar regions

Figure 1. Demonstration of the study area (Scenes 1–9). (a) and (b) Geo-location of the study area. (c) Optical MODIS Aqua images over the study area. (d) Optical MODIS Aqua image over Scene 1. (e) TanDEM-X SAR image over Scene 1; the pseudo color represents the averaged noise-subtracted backscattering intensity of HH and VV polarizations.

19

3.2. Pol-InSAR model

Interferometric coherence decomposition

$$\tilde{\gamma}_{\text{InSAR}} = e^{i \phi_{\text{O}}^2} \tilde{\gamma}_{\text{NR}} \tilde{\gamma}_{v}$$
Measured from data

1: topographic phase. The objective of this study.

2: baseline or surface decorrelation which depends on the nature of the surface scattering; it can always be removed by employing range spectral filtering and <u>thus is set equal</u> to 1 in this study.

3: decorrelation due to additive noise in the signals, only contribute to the magnitude, <u>can be corrected using NESZ</u> <u>values.</u>

4: complex volume decorrelation. <u>This study develops a</u> <u>model to estimate it.</u>

$$\tilde{\gamma}_{v} = \frac{\int_{0}^{D} \sigma_{v}(z) e^{i\kappa_{z_{vol}}z} dz}{\int_{0}^{D} \sigma_{v}(z) dz}$$

Complex volume decorrelation can be estimated by choosing an appropriate **vertical structural function** and a suitable **InSAR baseline** configuration

4. Method

Assumed to be uniform volume

Bottom

layer

Top

Two Surface scattering: top layer and bottom layer Two Volume scattering: snow volume and ice volume

4. Method

Simplification of the model

Merge the contributions of the **snow volume**, the **ice volume**, and the top layer into one Dirac

$$\gamma_{InSAR} = e^{i\phi_0} \frac{delta}{\alpha\gamma_v(\sigma_1, z_{01})} + e^{i\phi_1(1-\alpha)\gamma_v(\sigma_2, z_{02})} + m_1 e^{i\phi_1} + m_2 e^{i\phi_2}}{1+m_1+m_2}$$

= $e^{i\phi_0}\gamma_{mod_1}(\sigma_1, \sigma_2, \alpha, m_1, m_2, z_1, z_2)$ 7 parameters!

The approximated by merging the contributions of the snow volume, the ice volume, and the top layer into one Dirac delta:

$$\gamma_{InSAR} = e^{i\phi_0} \frac{1 \cdot e^{i\phi_1} + m e^{i\phi_2}}{1+m}$$

 $=e^{i\phi_0}\gamma_{mod S}(m,z_1,z_2)$

3 parameters!

 z_1 and z_2 position of the top and bottom layer, *m* is the layer-to-layer ratio;

Simplified model:

 $\gamma_{InSAR} = e^{i\phi_0} \frac{1 \cdot e^{i\phi_1} + me^{i\phi_2}}{1+m} = e^{i\phi_0} \gamma_{mod_S}(m, z_1, z_2)$

 z_1 and z_2 position of the top and bottom layer, *m* is the layer-to-layer ratio;

Relation between the layer-to-layer ratio *m* and the coPol coherence

THzürich

Table 2: Stage of develops for ice type categories (U.S. National Ice Center. Compiled by F. Fetterer and J. S. Stewart., 2020).

Sea ice category	Stage of development	Thickness (cm)
Multiyear ice (MYI)	Old ice	
	2nd year ice	N/A
	multiyear ice	
First-year ice (FYI)	FYI	$\geq 30-200$
	Thin FYI	30 - < 70
	Medium FYI	70-<120
	Thick FYI	≥ 120
Thin ice (TI)	New ice	< 10
	Nilas, ice rind	< 10
	Young ice	10 - < 30
	Gray ice	10-<15
	Gray-white ice	15 - < 30

