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ESA TomoSense Campaign 

p A new 3D remote sensing dataset featuring a temperate 
forest (Kermeter forest) in Germany[1]:

Ø P band monostatic SAR data (BIOMASS);

Ø L band mono- and bi-static SAR data (Rose-L) ;

Ø C band mono- and bi-static SAR data (Harmony);

Ø Terrestrial, UAV-based, Airborne LiDAR measurements;

Ø In-situ forest census (AGB、DBH…)

For more details, please go to:
[1] Tebaldini, S., d'Alessandro, M. M., Ulander, L. M., Bennet, P., Gustavsson, A., Coccia, A., ... & Scipal, K. 
(2023). TomoSense: A unique 3D dataset over temperate forest combining multi-frequency mono-and bi-static 
tomographic SAR with terrestrial, UAV and airborne lidar, and in-situ forest census. Remote Sensing of 
Environment, 290, 113532.

R: 𝐻𝐻 + 𝑉𝑉 , G: 2𝐻𝑉 , B: 𝐻𝐻 − 𝑉𝑉
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Ø Repeat-Pass acquisitions for TomoSAR 
imaging

                            

Ø Single-pass bistatic configuration for each flight

ESA TomoSense L band data 

pAcquisition Geometry



55

Outline

Ø Brief introduction to ESA TomoSense Campaign

Ø Challenges for SAR tomography on L band data

Ø Tomographic calibration and processing

Ø Conclusion



66

Challenges

pStarting Stage after pre-processing

Ø Initially SLCs are generated by projecting onto a reference 
topography using 2D time-domain back-projection (TDBP)

Ø No dedicated communication link was deployed between 
primary and secondary platforms.

Ø Unwanted phase disturbances and geometrical artifacts 
are mainly attributed to: 

ü Uncertainties in provided navigational data

ü A potential presence of clock drift errors 

ü Even inaccurate topography information (height-dependent 
coregistration offsets, not a big problem here)

      …

ü focusing and coregistration from a purely geometrical perspective;
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Chanllenges

pMajor Challenges

ü A potential presence of clock drift error: 

=> Additional phase modulation along flight direction;
=> Azimuthal imaging shifts in SLCs;

ü Residual positioning errors for dual platforms 
in provided navigational data:

• Varying positioning errors along flight direction: 
        => Locally spatially-varying imaging shifts; 

=> Fast varying phase disturbances;

• Positioning errors along baseline direction: 
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=> slowly-varying phase screen; 
=> vertical imaging shifts; 
=> tomographic imaging defocusing;
 

𝛿'( 𝜏 = 𝑇%& 𝜏 − 𝑇)& 𝜏

• Manifest as a varying function of flight time: 
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ESA TomoSense Campaign 

J Proper 2D focusing.

L Interferometric and tomographic performances.

Ø Given the performance of current navigational system and oscillator, only sub-pixel imaging 
shifts, and phase residuals arise:

Ø SAR interferometry is a relevant tool to sense and invert these errors, because 

Ø Following content is going to exhibit:

Used SAR data: TomoSense L-band SAR data in North-west heading

• Two InSAR examples to infer the presence of the errors;

• An InSAR based calibration;

• Highly sensitive to sub-pixel coregistration errors;

• Demanding accurate phase information.
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First InSAR example 

Monostatic SLC of the 18th flight Bistatic SLC of the 18th flight Monostatic SLC of the 21st flight Bistatic SLC of the 21st flight

Single-pass InSAR
InSAR phase InSAR coherence amplitude InSAR coherence amplitude InSAR phase 

Single-pass InSAR

Totally decorrelated!Partially coherent with!
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First InSAR example

Monostatic Image of the 18th flight Bistatic Image of the 18th flight Monostatic Image of the 21st flight Bistatic Image of the 21st flight

Repeat-pass InSAR for monostatic data

InSAR coherence amplitude InSAR phase 

Highly coherent despite some 
local coherence fluctuation 
due to residual time-varying 
baseline errors!
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First InSAR example

Monostatic Image of the 18th flight Bistatic Image of the 18th flight Monostatic Image of the 21st flight Bistatic Image of the 21st flight

Repeat-pass InSAR for Bistatic data

InSAR coherence amplitude InSAR phase 

Fast phase modulation 
along flight direction!

Totally 
Decorrelated!

Besides the confirmed presence 
of baseline errors,  clock-drift 

error is suspected to be involved.
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Second InSAR example 
Monostatic SLC of the 3rd flight Bistatic SLC of the 3rd flight Monostatic SLC of the 4th flight Bistatic Image of the 4th flight

Repeat-pass InSAR for bistatic data
InSAR coherence amplitude InSAR coherence amplitude 

Repeat-pass InSAR for monostatic data

Subject to coupled 
trajectory errors from 

dual platforms!
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Calibration and imaging
u A cascaded calibration approach with following three steps:

Ø Single-pass Multi-Squint InSAR for each mono- and bi-static InSAR pair 
ü Capture the potential clock drift like term in each bistatic image;
ü Inverse time-varying baseline errors between two platforms for each pass;
ü Defocus and refocus each bistatic SLCs with clock drift like phase compensations terms and updated trajectories.

Ø  Multi-baseline multi-squint InSAR for both mono- and bi-static data stack      
ü Inverse 𝑁 − 1  passes of time-varying trajectory errors for both platforms out of all coherent InSAR pairs;
ü the objective is to achieve better coregistration of ensemble tomographic dataset in the presence of large spatial and 

temporal separations for InSAR pairs;
ü Defocus and refocus the mono- and bi-static SLCs using corrected trajectories.

Ø  Bistatic version of Phase Center Double Localization (PCDL)[1]
ü Retrieve 𝑁 − 1  passes of positioning errors along baseline direction for both platforms out of all coherent InSAR pairs;
ü Guarantee consistent phase centers for both mono- and bi-static imaging modes;

[1] Tebaldini, S., Rocca, F., d'Alessandro, M.M. and Ferro-Famil, L., 2015. Phase calibration of airborne tomographic SAR data via phase center double localization. IEEE Transactions on 
Geoscience and Remote Sensing, 54(3), pp.1775-1792.
[2] Yu, Y.; d’Alessandro, M.M.; Tebaldini, S.; Liao, M. Signal Processing Options for High Resolution SAR Tomography of Natural Scenarios. Remote Sens. 2020, 12, 1638. 

u Tomographic Imaging formation
Ø Defocusing the initial mono- and bi-static SLCs and directly project onto 3D space using corrected trajectories and 

phase compensation terms via 3D TDBP[2].



1414

Interferometric performance enhancement
Original Repeat-pass Bistatic InSAR phase After Step-1 Calibration 

Original Repeat-pass Bistatic InSAR coherence amplitude After Step-1 Calibration 

After Step-2 Calibration 

After Step-2 Calibration 
Residual 

motion errors 
remain!
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Interferometric performance enhancement 

Original repeat-pass Bistatic InSAR coherence After Step-2 Calibration 

From totally decorrelated to fully correlated!

Coherence amplitude value:

Before calibration (orange) vs After calibration (blue)

mostly below 0.25 mostly above 0.75
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Tomographic performance enhancement

Ø Tomographic imaging metric:

γ'()(,+ 𝑥, 𝑦, 𝑧 =
𝑁, ⋅ ∑-./0 𝑦-+ 𝑥, 𝑦, 𝑧

,

∑-./0 𝑦-+ 𝑥, 𝑦, 𝑧
,

0: decorrelated for whole data stack(L)

1: fully coherent for whole data stack(J, point target)
with k=mono- or bi-static imaging mode
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p Tomographic performance during calibration
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Tomographic profiles VS LiDAR 

LiDAR DSM in white lines
LiDAR DTM in black lines

In a good agreement!

Ø Comparing tomographic section along azimuth 
direction with LiDAR measurements

Mainly focusing on bistatic data
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A synergy of mono- and bi-static Imaging

Calibrated Monostatic Tomogram (𝒙𝟎 = 𝟐𝟏𝟎	[𝒎])
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Calibrated Bistatic Tomogram (𝒙𝟎 = 𝟐𝟏𝟎	[𝒎])

Mono- and Bi-Static joint Tomogram (𝒙𝟎 = 𝟐𝟏𝟎	[𝒎])

Enable a joint imaging mode with 
higher vertical resolution! 
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Conclusion

L-Band calibration was carried out in cascaded fashion with three steps:
o Single-pass Bistatic multi-squint InSAR processing:
ó Correction of potential clock drift errors and baseline errors between two platforms along flight direction
o Multi-baseline multi-squint InSAR processing  for both mono- and bi-static data stack:
ó Correction of coregistration errors for both data stacks and fast-varying residual phase errors
o Bistatic version of Phase Center Double Localization:
ó Determination of positioning errors of two platforms along baseline direction, and correction of slow-varying residual 
phase errors

The TomoSense campaign provides a rich remote sensing data featuring a temperate forest site, including multi-
frequency and bistatic tomographic SAR acquisitions and a large amount of reference data.  

Particularly, the L-band bistatic data could motivate a series of advanced technologies and scientific applications. In 
any case, a fundamental requirement is the accurate measurement of sensor-to-target distances within the synthetic 
apertures along flight and/or baseline directions.

The resulting 3D L-Band reconstruction is observed to be in excellent agreement with aerial Lidar data;
Our calibration enable a joint imaging mode (using both mono- and bi-static data) with higher vertical resolution;
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Conclusion

Thank you for Attention!

Special thanks to ESA and Meta-Sensing for 
providing such a nice dataset!
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Tomographic performance enhancement

Ø Tomographic imaging metric:

γ'()(,+ 𝑥, 𝑦, 𝑧 =
𝑁, ⋅ ∑-./0 𝑦-+ 𝑥, 𝑦, 𝑧

,

∑-./0 𝑦-+ 𝑥, 𝑦, 𝑧
,

0: decorrelated for whole data stack(L)

1: fully coherent for whole data stack(J, point target)
with k=mono- or bi-static imaging mode

p Tomographic performance during calibration

First two steps lead to sidelobes 
suppressing and better final focusing


