# Tomographic SAR Algorithms Performance in Co-Fliers Mission Concept Formulation

Marco Lavalle, Shashank S. Joshil, Ilgin Seker, Eric Loria, Razi Ahmed, and Brian P. Hawkins



Jet Propulsion Laboratory, California Institute of Technology

# Background: Surface Topography and Vegetation (STV)

- Global, fine-scale observations of surface topography and vegetation structure (STV) are critical to address key science questions and applications in Solid Earth<sup>SE</sup>, Ecosystems<sup>V</sup>, Cryosphere<sup>C</sup>, Hydrology<sup>H</sup>, and Coastal Processes<sup>CP</sup>
- 2017 Decadal Survey recommended Surface Topography and Vegetation (STV) as "Incubator Observable"
- In 2020 NASA conducted a 1-year study to identify STV products needs and science and technology gaps. STV Study generated the STV Study Report with SATM and list of technology maturation activities (Donnellan et Al., 2021)
- On-going funded projects on science and technology maturation activities under the Decadal Survey Incubator (DSI) Call



| STV Product Parameter          |        | Aspirational |                |             | Threshold |                |              |
|--------------------------------|--------|--------------|----------------|-------------|-----------|----------------|--------------|
|                                |        | Median       | Most Stringent |             | Median    | Most Stringent |              |
|                                |        | Need         | Need           | Discipline  | Need      | Need           | Discipline   |
| Coverage Area of Interest      | %      | 90           | 95             | С, Н        | 55        | 90             | С            |
| Latency                        | Days   | 5            | 0.5            | SE          | 60        | 1              | SE           |
| Duration                       | Years  | 9            | 10             | SE, C, A    | 3         | 3              | SE, V, C, CP |
| Repeat Frequency               | Months | 0.1          | 0.03           | SE, A       | 3         | 0.2            | SE           |
| Horizontal Resolution          | m      | 1            | 1              | SE, C, H, A | 20        | 3              | SE           |
| Vertical Accuracy              | m      | 0.2          | 0.0            | SE, C, H    | 0.5       | 0.1            | С            |
| Vegetation Vertical Resolution | m      | 1            | 0.5            | H, A        | 2         | 0.2            | CP           |
| Bathymetry Max Depth           | m      | 25           | 30             | C, CP       | 10        | 10             | SE, C, CP    |
| Geolocation Accuracy           | m      | 1            | 1.0            | SE, V, H, A | 5         | 3              | SE, V        |
| Rate of Change Accuracy        | cm/yr  | 5            | 1              | SE, C, A    | 35        | 1              | SE           |

Study report: science.nasa.gov/earth-science/decadal-stv

# Background: Why co-fliers to meet STV needs?

- 1. Repeated single-radar observations are generally not sufficient to meet the STV products needs
- 2. Costs for multiple active platforms can be high and beyond a single-agency's cost cap
- 3. Co-fliers allow for flexibility and reconfigurability, e.g., using multi-static modes (SISO, SIMO, and MIMO)
- 4. Passive co-fliers can take advantage of NISAR (launch: 2024) and ROSE-L (launch: 2028-2030) as transmitters

### GOAL

Identify the most viable TomoSAR mission architecture by assessing the TomoSAR global performance for various options of the mission trade space

### CHALLENGE

The trade space for a multi-static SAR mission is complex as it involves multiple platforms and how they cooperate



Single-Input/Single-Output





## Approach: End-to-end TomoSAR Trade Study Tool



### Trade Space in end2end TomoSAR Mission Design



| Main trade variables              | Options                                                             |  |  |
|-----------------------------------|---------------------------------------------------------------------|--|--|
| formation size and geometry       | 3-15 platforms                                                      |  |  |
| radar frequency/bandwidth         | L, S, 40/80 MHz                                                     |  |  |
| multi-static mode                 | SIMO, MIMO, SISO                                                    |  |  |
| radar mode                        | Stripmap, SweepSAR, HRWS                                            |  |  |
| processing                        | real-time, post-processing                                          |  |  |
| synchronization                   | GNSS-only, inter-sat link                                           |  |  |
| positioning                       | GNSS-only, range-measurement                                        |  |  |
| tomographic algorithm             | Back-projection, Beamforming, Capon,<br>Phase-backscatter Histogram |  |  |
| L1 Performance metrics (point)    | L1 Performance metrics (distributed)                                |  |  |
| Resolution                        | In/out profile correlation                                          |  |  |
| Integrated Side-Lobe Ratio (ISLR) | In/out profile RMSE                                                 |  |  |
| Peak Side-Lobe Ratio (PSLR)       | Number of output peaks                                              |  |  |
| Location error                    | Vertical location of peaks                                          |  |  |
| Peak amplitude                    |                                                                     |  |  |
| Relative radiometric accuracy     |                                                                     |  |  |

marco.lavalle@jpl.nasa.gov

### Initial reference architectures evaluated for STV



# 4 passive co-fliers with ideal rectilinear orbits



- Simplified geometry with ideal orbits
- SCH reference frame
  - S = along-track
  - C = ground-range
  - H = height
- Single point target
- Zero bistatic angle
- Uniform array along elevation *n*
- Used for sanity check

### 4 passive co-fliers with ideal rectilinear orbits

### BACKPROJECTION



### 4 passive co-fliers with ideal rectilinear orbits

- Resolution analysis of simulations vs analytical formulas; increasing number of platforms and tomographic baseline (from 5km to 30km)
- Vertical resolution can be affected by range bandwidth, and horizontal resolution can be affected by tomographic aperture (*Seker and Lavalle, Remote Sensing 2021*)

Vertical $\delta_z = \max(\delta_{nz}, \ \delta_{rz}) = \max(\delta_n sin\theta, \ \delta_r cos\theta)$ Ground-range $\delta_x = \max(\delta_{nx}, \ \delta_{rx}) = \max(\delta_n cos\theta, \ \delta_r sin\theta)$ 





12.5

10.0

- 5.0

2.5

- 40

- 35

30 [ 25

- 20

3

2 [2]

LO

Longitude

-7.5 L

### 4 passive co-fliers with transmitter in close formation Min Perp Baseline 15.0 60 40 passive co-fliers designed as 20 0 Tatitude 20– 20 passive relative orbits (PROs) **NISAR** -40-60 0.0 -150-100-50 Ó 50 100 150 Longitude Max Perp Baseline 60 NISAR orbit 40 20 Latitude 0 -20 -40-60 $\phi_{az}$ . 15 50 100 -150-100-50 150 0 Longitude 11 1 Max AT Baseline 1 elevation 60 40 20 Latitude 0 С -20 Ground range -40-60-50 50 100 150 -150-100Ó

## 4 passive co-fliers with transmitter in close formation

![](_page_10_Figure_4.jpeg)

### 4 passive co-fliers with leading transmitter

![](_page_11_Figure_4.jpeg)

![](_page_11_Figure_5.jpeg)

### 4 passive co-fliers with leading transmitter

![](_page_12_Figure_4.jpeg)

### Tomographic Point Target Response Across Architectures

![](_page_13_Figure_4.jpeg)

![](_page_13_Figure_5.jpeg)

4.07 m

2.82 m

Vertical

![](_page_13_Figure_6.jpeg)

| Resolution   | Backproj | Beamform |
|--------------|----------|----------|
| Ground-range | 4.81 m   | 4.36 m   |
| Vertical     | 2.90 m   | 1.56 m   |

### 4 passive co-fliers with a transmitter and many GEDI profiles

![](_page_14_Figure_4.jpeg)

### 4 passive co-fliers with a transmitter and many GEDI profiles

![](_page_15_Figure_4.jpeg)

### 4 passive co-fliers with a transmitter and many GEDI profiles

![](_page_16_Figure_4.jpeg)

## Histogram Tomography Algorithm to Inform Trade Studies

G. Shiroma and M. Lavalle, "Digital terrain, surface, and canopy height models from InSAR backscatter-height histograms", *IEEE Transactions on Geoscience and Remote Sensing*, 58 (6), 2021

![](_page_17_Figure_5.jpeg)

## Take-away messages

- 1. JPL is developing an end-to-end simulation environment to conduct trade studies towards the design of a multi-static/tomographic space mission
- 2. Initial (and partial) results comparing back-projection and beamforming algorithms show agreement with theory and some promise to map STV in various configurations
- 3. Several simulations and reporting capabilities, error sources, and data layers (e.g., DEM) will be added throughout the 3-year NASA STV study
- 4. Postdoc opportunities (email to: marco.lavalle@jpl.nasa.gov)
  - TomoSAR/3D structure/biomass mapping with real-data (sci) and/or simulations (eng)
  - NISAR algorithms development (time-series, polarimetry, InSAR fusion, AI)