

An underlying topography determination approach over Forested area based on Interferometric Phase Histogram using Spaceborne Tandem-X InSAR and GEDI LiDAR Data

<u>Yanghai Yu¹, Yang Lei¹, Stefano Tebaldini², Chuanjun Wu²</u>

¹ National Space Science Center, Chinese Academy of Science ² Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano

ESA UNCLASSIFIED - For ESA Official Use Only

Outline

- Brief Introduction and motivations
- > Methodology
- Experiments and studies
- Conclusion

Remote Sensing of Forest

DMajor remote sensing methods for featuring forest :

Multi-/hyper spectral, Multi-angle optical remote sensing based methods: ٠

© Higher spatial resolution, and better morphological interpretation; \odot Prone to weather condition;

Light Detection and Ranging (LiDAR) based methods: ٠

© Highest vertical measurement accuracy; ³ Prone to cloudy weather condition;

Synthetic Aperture Radar (SAR) based methods: •

© A well balance between wall-to-wall mapping and vertical measurements accuracy;

© Great penetration capabilities at lower frequency;

SAR based methods

LiDAR based inversion

Sensitivity to vertical forest structure by using dense pulses penetrating the holes between leaf

Airborne vs Spaceborne

Cover the Research site of this study

A review

> A short review of forest investigation based on spaceborne observations

	Spaceborne LiDAR	Pol-SAR backscatter	PolInSAR	Repeat-pass InSAR	Single-pass InSAR
polarization	—	co-/cross pol	Full-pol	Mono- / dual-/ full-pol	Co-pol
Frequency	—	L- / P- band	X- / L-band	C- to L-band	X- band
Number of satellites	Single	Mono-static	Bistatic	Monostatic	Bistatic
weakness	Sparse Sampling	Saturation problem	Limited availability	Temporal Decorrelation	Limited penetration
accuracy	Meter level for a 25m footprint	Relatively coarse	meters / hectare	meters / 3-6 hectares	meters / hectares

✓ TomoSAR based

ESA BIOMASS is forthcoming..

Methodology

> High-frequency and high-resolution few-look InSAR phase histogram

- ✓ possible to penetrate the gaps in the midst of clustered "hard" targets (typically in dense tropical forest).
- Obtaining LiDAR-like vertical profiles by a statistic of few-look InSAR phase-center height over a local horizontal window

(R. Treuhaft et al, JGR 2008) Ground finding by Manual Interpretation

EM simulation

→ THE EUROPEAN SPACE AGENCY

·eesa

A statistical function for ground finding

□High-resolution InSAR Phase histogram and ground finding

Histogram formation:

 ϑ : slopes

$$P_{H}(z_{n}) = \sum_{m=1}^{M} \operatorname{rect}(\varphi_{m}, z_{n}) \operatorname{rect}(\varphi_{m}, z_{n}) = \begin{cases} 1 & if -\frac{\Delta h}{2} \leq \frac{\varphi_{m}}{k_{z}} - z_{n} \leq \frac{\Delta h}{2} \\ 0 & otherwise \end{cases}$$

$$M: \text{ is the size of sliding window;}$$

$$\varphi_{m}: \text{ single look, or few looks (e.g., 2-4) InSAR phase;}$$

$$z_{n}: \text{ the height bin;}$$

$$k_{z}: \text{ the interferometric wavenumber;}$$

$$P_{d}(z_{n}) = \alpha(h_{v}, \lambda, \vartheta, \rho_{x}, \rho_{r}, ...) \cdot \mu + \beta(h_{v}, \lambda, \vartheta, \rho_{x}, \rho_{r}, ...) \cdot \sigma$$

$$h_{g}: \text{ the relative height of underlying ground}$$

$$\mu, \sigma: \text{ first two statistical moments of histogram } P_{H}(z_{n})$$

$$\alpha, \beta: \text{ two linear coefficients depending on factors as follow}$$

$$h_{v}: \text{ canopy height as a rough indicator of tree types}$$

$$\lambda: \text{ wavelength}$$

$$\rho_{x}, \rho_{r}: \text{ azimuth / range resolution}$$

Over Brazil Amazon area

Histogram illustration of TanDEM-X InSAR phase-center height versus field-measured mean height over two representative field plots of an amazon area (Y. Lei., et al., 2021)

Model determination

□ The determination of above coefficients

Constant factor assumption:

Only field data available at that time, a first simplification was made:

$$h_g = \mu + \beta \cdot \sigma$$

 α , β is assumed as a constant value over the scene, $\alpha = 1$, $\beta = 2$ is assumed and validated over a small area amazon area in 2021.

Height-dependent factor assumption:

With the rich availability of GEDI samples, we are able to make a step further and recast the β as a function of canopy height:

$$h_g = \mu + \beta(h_v) \cdot \sigma$$

💳 💶 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 📰 📲 🔚 🚛 📲 💳 🛶 🚳 🍉 📲 👫 💶 📾 📾 📾 🔤 🍬 🗰

Research site

> Howland Research Forest in the U.S states of Maine

GEDI Samples of canopy height

Height dependent factors

Height-dependent factors retrieval based on GEDI samples

GEDI Samples of underlying ground

Forest height indictors

Height-dependent Factors

Forest Height Indicator [m]

Making joint use of ALOS InSAR and GEDI LiDAR RMSE: ~3.8m at sub-hectare statistical size (Y. L., et al., TGRS, 2017, Y. Yu, et al., IGARSS, 2023)

Our derived result

13

Accuracy assessment for Derived DTM

@30m spatial resolution

14

Comparison

Comparison w.r.t the method using a constant factor assumption

Canopy height estimation by RVoG

Statistical pixel size ~0.09ha

Canopy height estimation by RVoG

Phase center height VS LiDAR mean height

Concluding remarks

- > A promising approach in the context of high-resolution spaceborne missions:
 - ✓ Require single-baseline single-polarization InSAR only;
 - ✓ Presenting certain sensitivities to vertical forest structure;
 - ✓ Underlying topography is estimated to an accuracy of ~3.2m at 30m spatial resolution (0.09ha);
 - ✓ A following RVoG based forest inversion achieves an accuracy of ~3.7m at 30m spatial resolution (0.09ha);
- ➢ More efforts are still needed:
 - Explore the best use of phase center height for refining the DTM estimates.
 - Analyzing the effects of those factors (h_v, λ, θ, ρ_x, ρ_r ...) by using ESA TomoSense airborne remote sensing dataset;

Thank you for Attention!

####