Assessing Polarimetric SAR Interferometry coherence region parameters over a permafrost landscape

Paloma Saporta^{1,2}, Alberto Alonso González³, Irena Hajnsek^{1,2}

¹ German Aerospace Center, Germany

² ETH Zurich, Switzerland

³ Universitat Politècnica de Catalunya, Spain

Knowledge for Tomorrow

Motivation and goals

permafrost = soil that remains < 0 °C for at least 2 consecutive years

permafrost degradation (active layer thickness increase)

local scale: landslides, mass wasting hydrology damage to settlements, infrastructures

- first Pol-InSAR analysis over Siksik Creek, in the continuous permafrost region of the Canadian Arctic
- Obu et al., "Northern Hemisphere permafrost map based on TTOP modelling for 2000– 2016 at 1 km2 scale", Earth-Science Reviews,2019

- · examine the influence of
 - season
 - vegetation type on the PolInSAR coherence regions

Permafrost: seasonal dynamics

Dataset: PermASAR campaign and Siksik Creek Testsite

- 2 missions: summer 2018 and winter 2019
- 9 test sites in Canada
- F-SAR operations:
 - X,C,L-band
 - Fully polarimetric
 - Several baselines

Investigate interaction radar signals \leftrightarrow permafrost soils

• Ground measurements (land cover, DTM..)

 lake

 river

 bare soil

 polygon wet center

 polygon dry center

 lichen

 moss

 dry hummock

 tussock

 dwarf shrub

 single shrub

 riparian shrub

 tree

Focus on Siksik Creek testsite

Grünberg et al., "Linking tundra vegetation, snow, soil temperature, and permafrost", Biogeosciences, 2020.

Workflow

- PolInSAR observation space
- Polar decomposition: derive max. phase extent ↔ extent of phase center • heights with polarisation

Lange et al., "Airborne Laser Scanning (ALS) Point Clouds of Trail Valley Creek, NWT, Canada (2018)", 2021 Vegetation height [m]

Coherence region extent determination

• Image 1: scattering matrix
$$[S_1] = \begin{bmatrix} S_{HH}^1 & S_{HV}^1 \\ S_{VH}^1 & S_{VV}^1 \end{bmatrix} \rightarrow \text{scattering vector } k_1 = \frac{1}{\sqrt{2}} [S_{HH}^1 + S_{VV}^1, S_{HH}^1 - S_{VV}^1, 2S_{HV}^1]$$

• Image 2: scattering matrix $[S_2] = \begin{bmatrix} S_{HH}^2 & S_{HV}^2 \\ S_{VH}^2 & S_{VV}^2 \end{bmatrix} \rightarrow \text{scattering vector } k_2 = \frac{1}{\sqrt{2}} [S_{HH}^2 + S_{VV}^2, S_{HH}^2 - S_{VV}^2, 2S_{HV}^2]$

- PolInSAR matrices: coherency matrices $T_1 = \langle k_1 k_1^{*T} \rangle$ and $T_2 = \langle k_2 k_2^{*T} \rangle$ and $\Omega_{12} = \langle k_1 k_2^{*T} \rangle$
- Pre-whitening and normalization: $\Pi = T_M^{-1/2} \Omega_{12} T_M^{-1/2}$ with $T_M = \frac{1}{2} (T_{11} + T_{22})$.
- Polar decomposition: $\Pi = U P$ where
 - $P = (\Pi^{*T}\Pi)^{1/2}$ positive semi-definitive hermitian matrix
 - $U = \Pi P^{-1}$ unitary matrix

 \rightarrow phases can be be maximized/minimized by the eigenvectors of U: $\gamma(\phi_{min}), \gamma(\phi_{max})$

1st eigenvector

270°

0.4 0.6 0.8

Summer case

Summer L-band

B=100m

Summer case

Summer L-band

B=100m

Summer case

Summer L-band

B=100m

Winter case

Winter L-band

B=100m

Error estimation: phase standard deviation

DLR

DLR

Dependence on vegetation type

Dependence on vegetation type

Outlook

- First polarimetric coherence region analysis over permafrost at L-band and C-band
- PolInSAR coherence region extent main outcome
 - Summer: discriminate with landcover type/height
 - Winter (ground and vegetation is frozen low dielectric contstant)
 - \rightarrow L-band: increase of Δ height
 - \rightarrow C-band: no change between summer and winter
- Further research:
 - Introducing EM model for permafrost: relating observations to snow, ground penetration and vegetation transparency

Assessing Polarimetric SAR Interferometry coherence region parameters over a permafrost landscape

Paloma Saporta^{1,2}, Alberto Alonso González³, Irena Hajnsek^{1,2}

Thanks!

DLR

External data on the smaller zone

Vertical wavenumbers

