

Temporal Coherence of Multitemporal and Polarimetric SAR Data: Application To Agricultural Event Detection Using Sentinel-1 Data

Nathan Paillou, Suzanne Angeli, Maxime Demazeau, Sandrine Daniel

Capgemini

ESA UNCLASSIFIED - For ESA Official Use Only

👝 🧫 💵 👬 🚍 🔤 🔚 🏥 드 💶 🚺 📕 🚍 🏪 🔤 🔤 🚳 🚬 📲 👯 🕂 🛨 💶 🚾 🔛 🔶 THE EUROF

Summary

I Context

II Methodology

- 1 Dataset and ground truth
- 2 Reinterpreted Temporal Coherence
- 3 Reinterpreted vs Classical Temporal Coherence

III Results

- 1 Reinterpreted vs Classical Temporal Coherence
- 2 Promising results
- 3 Issues
- IV Leftovers and perspectives

💳 💶 💵 🚍 💳 🕂 📲 🧮 🚍 📲 📲 🚍 🛻 🚳 🛌 📲 🖿 🗰 🚺 🚼 🗮 🗰 🗰 🗰 🖛 👘 🗠 The European space agency

I Context

Crop monitoring

- Improving production by identifying the best farming practices
- Monitoring of the state of a field (flowering, disease control, irrigation management...)
- Logistics for farm silos, which fields to harvest

Existing methods at Capgemini

- Optical data used for this detection → problem due to cloudy days (from 50% to 60% in France) for precise dating
- SAR coherence → problem due to lowcoherence area studied

UE interest

- New common agricultural policy
- Agricultural subsidies
- Forecasting and managing agricultural or environmental crises

Scalability

- Actual method is to send agents note the state of a field by visiting it → outdated for new common agricultural policy
- Need an easy-to-use method for non-radar experts

💳 💶 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 🔚 🚍 👭 🔤 🛶 🚳 🛌 📲 🚼 🖬 📾 🙀 🖓 אראר EUROPEAN SPACE AGENCY

II Theory 1 dataset and ground truth

Dataset:

- 8 SLC IW Dual-Pol VV/VH Sentinel-1 acquisitions over France, between 22/06/2022 and 25/08/2022, processed using SNAP, with a pixel spacing of 2.3m in range and 13.9m in azimuth
- 7 coherences have been calculated using a 15x3 window as spatial averaging, i.e 34.5m x 41.7m
- Different variables have been looked at in order to try to increase the event detection

Ground truth:

- Graphical Parcel Registers (RPG) data provided by the National Institute of Geographic and Forest Information (IGN) of 2022
- Campaign : 63 fields visited over 178897 fields the 28th August in our Sentinel-1 acquisitions footprint

🗯 🔜 📕 🔚 🔤 🚥 🕂 📲 🛄 📲 📲 🔚 🚛 🚱 🖕 🚺 📲 🛨 🔤 🖬 👘 🖓

II Theory 2 Reinterpreted Temporal Coherence

Mono-polarisation:

The Interferometric Coherence between two acquisitions 1 and 2 is defined by :

 $\rho = \frac{\langle S_{1XY} S_{2XY}^* \rangle}{\sqrt{\langle S_{1XY} S_{1XY}^* \rangle \langle S_{2XY} S_{2XY}^* \rangle}}$

Where $\langle ... \rangle$ indicates the expectation value, S_1 and S_2 are the complex backscatter coefficient for the images 1 and 2, XY a chosen polarisation and * the complex conjugate.

Dual-polarisation (Sentinel-1 VV/VH polarisations):

We define the coherent scatting vector $\underline{\mathbf{k}} = [S_{VV}, 2S_{VH}]^T$ and three matrices : $[T_{11}] = \langle \underline{k}_1 \underline{k}_1^{*T} \rangle$ and $[T_{22}] = \langle \underline{k}_2 \underline{k}_2^{*T} \rangle$ the coherency matrices and $[\Omega_{12}] = \langle \underline{k}_1 \underline{k}_2^{*T} \rangle$ the temporal PolInSAR matrix

The Polarimetric Interferometric Coherence is then defined by :

$$\rho = \frac{\langle \underline{w}_1^{*T}[\Omega_{12}]\underline{w}_2 \rangle}{\sqrt{\langle \underline{w}_1^{*T}[T_{11}]\underline{w}_1 \rangle \langle \underline{w}_2^{*T}[T_{22}]\underline{w}_2 \rangle}}$$
[1]

Where \underline{W}_1 and \underline{W}_2 are unitary complex vector that are linked to the scattering mechanisms.

[1] S. R. Cloude and K. P. Papathanassiou, "Polarimetric SAR interferometry," in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 36, no. 5, pp. 1551-1565, Sept. 1998, doi: 10.1109/36.718859.

II Theory 2 Reinterpreted Temporal Coherence

The Polarimetric Interferometric Coherence can be divided in two terms: $\rho = \rho_{sym}\rho_{asym}$, and using $[T] = \frac{[T_{11}] + [T_{22}]}{2}$ we obtain:

• $\rho_{sym} = \rho_{temp} \rho_{SNR} \rho_{rg} \rho_{vol} \rho_{other} = \frac{\langle \underline{w}_1^{*T}[\Omega_{12}] \underline{w}_2 \rangle}{\langle \underline{w}_1^{*T}[T] \underline{w}_2 \rangle}$ which account for changes under the equal scattering mechanism assumption between both acquisitions. • $\rho_{asym} = \frac{\langle \underline{w}_1^{*T}[T] \underline{w}_2 \rangle}{\sqrt{\langle \underline{w}_1^{*T}[T_{11}] \underline{w}_1 \rangle \langle \underline{w}_2^{*T}[T_{22}] \underline{w}_2 \rangle}}$ which account for noncoherent changes between both images.

This second term is interesting as it allows characterisation of PolInSAR data for low-coherence scenarios, the idea is therefore to maximise it.

It has been demonstrated in [2] that it is maximised for $\underline{w}_1 = \underline{w}_2 = \underline{w}$ and when the following real eigenvalue problems is solved:

 $\begin{cases} [T_{11}^{-1}][T_{22}]\underline{w} = \nu_{\tau}\underline{w}\\ [T_{22}^{-1}][T_{11}]\underline{w} = \nu_{\tau}^{-1}\underline{w} \end{cases}$

Therefore, using these eigenvalues v_{τ} or corresponding $\rho_{asym,opti}$ values allows to study low-coherence scenarios.

[2] J. Ni, C. López-Martínez, Z. Hu and F. Zhang, "Multitemporal SAR and Polarimetric SAR Optimization and Classification: Reinterpreting Temporal Coherence," in *IEEE Transactions on Geoscience and Remote Sensing*, vol. 60, pp. 1-17, 2022, Art no. 5236617, doi: 10.1109/TGRS.2022.3214097.

→ THE EUROPEAN SPACE AGENCY

Reinterpreted Temporal Coherence

Advantages:

- Can be used in low-coherence scenarios
- Creation of new useful variables characterising the target
- Optimised values calculated to facilitate studies

Drawbacks:

- Loss of physical meaning for optimised values
- Much longer calculation times and need for more computing power for the optimised values (41,1Go RAM used, 25 minutes, parallelised on 20 processors)

Classical Temporal Coherence

Advantages:

- Easy to understand
- Easy to calculate (12.1Go RAM used, 198 secondes)

Drawbacks:

Can not be used in low-coherence scenarios

III Results 1 Reinterpreted vs Classical Temporal Coherence

Classical Temporal Coherence

·eesa

III Results 1 Reinterpreted vs Classical Temporal Coherence

Reinterpreted Temporal Coherence: ρ_{sym}

III Results 1 Reinterpreted vs Classical Temporal Coherence

Reinterpreted Temporal Coherence: ρ_{asym}

III Results 2 Promising results

Reinterpreted Temporal Coherence: ρ_{sym}

III Results 2 Promising results

Reinterpreted Temporal Coherence: ρ_{sym}

💳 🔜 📲 🚍 💳 🕂 📲 🧮 🚍 📲 📲 🚍 📲 🚍 👞 🚳 🍉 📲 🚼 💶 📾 💁 🛥 👘 🔶 The European space agency

III Results 3 Issues

- No results based on $\rho_{\textit{asym}}$ matching our ground $\,$ Weird results for $\rho_{\textit{asym,opti}}$ truth
- For some fields, non-consistant results

IV Leftovers and perspectives

Further researches

- Investigate the negative results where the detection failed : Small fields ? Sensor path ? Crop Orientation ? Other reason ? => Need for more ground truth : SinCohMap ?
- Study ρ_{asym,opti} results, as they are in theory promising but did not gave any good results for now

Global application

 Develop an easy-to-use application on MAAP once results are confirmed

• Reduce processing time

New use cases

- Forests in C-Band
- Sand areas
- Any further ideas ?

💻 📕 🚛 💶 🖛 🕂 📲 🧮 📰 📲 🔚 📲 📰 🛻 🚳 🍉 📲 🚼 📰 📾 🛤 🛤 🌬 🍁 🔸 The European space agency

Conclusion

- Innovative use case
- Further researches to improve our results
- Lot of possible applications
- Ambition to create an application to share with non-expert users
- Scalability

💳 🔜 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 📲 📲 🚟 📥 🚳 🖢 📲 🚼 🖬 📾 🛥 👘 · The European space agency

Thank you for your attention !

Do you have any questions ?

Annexes 1 w averaging

$$\rho = \frac{\langle \underline{w}_1^{*T} [\Omega_{12}] \underline{w}_2 \rangle}{\sqrt{\langle \underline{w}_1^{*T} [T_{11}] \underline{w}_1 \rangle \langle \underline{w}_2^{*T} [T_{22}] \underline{w}_2 \rangle}}$$
[1]

$$\begin{bmatrix} [T_{11}^{-1}][T_{22}]\underline{w} = v_{\tau}\underline{w} \\ [T_{22}^{-1}][T_{11}]\underline{w} = v_{\tau}^{-1}\underline{w} \end{bmatrix}$$
obtained making the assumption $\langle \underline{w}_{1}^{*T}[X]\underline{w}_{2} \rangle = \underline{w}_{1}^{*T}\langle [X] \rangle \underline{w}_{2}$

· e e sa