

L-BAND INTERFEROMETRIC COHERENCE TIME-SERIES FOR FOREST PARAMETERS RETRIEVAL

C. Telli^[1], M. Lavalle^[2], N. Pierdicca^[1]

¹ Sapienza University, Dept. of Information Eng., Electronics and Telecommunications ² Jet Propulsion Laboratory, California Institute of Technology

ESA UNCLASSIFIED - For ESA Official Use Only

🔲 🧮 📲 🚝 🔤 🚍 📲 📲 📲 📲 📲 📲 🚝 🔤 🔤 📲 📲 📕 📲 层 🖉

→ THE EUROPEAN SPACE AGENCY

Background | Temporal Decorrelation in Vegetated Areas

- Several SAR missions are designed to acquire global **near zero baseline InSAR time-series**
- InSAR acquisitions over vegetated areas are affected by **temporal decorrelation** due to:
 - Vegetation Growth and Dynamics
 - Wind speed

Goal

- Variation in Soil and Vegetation Water Content
- Using time-series of temporal coherence for land applications requires **models and** retrieval algorithms

Map forest properties from **time-series** of InSAR **temporal** coherence using a model-based approach

·eesa

sentinel-1

ALOS-2

Physical Model of Temporal Polarimetric InSAR Coherence

· e e sa

Random Motion Over Ground Model (RMoG+)

Model time-series of repeat-pass temporal coherence over land Scatterers' motion modeled with Gaussian + Brownian statistics

$$\gamma(t_1, t_2) = \frac{\sqrt{\mu_1 \mu_2} \, \gamma_g + \gamma_v}{\sqrt{(\mu_1 + 1)(\mu_2 + 1)}}$$

Ground-level coherence

$$\gamma_g = \exp\left[-\frac{1}{2}\left(\frac{4\pi}{\lambda}\right)^2 \delta_g^2 T\right]$$

Long-Term Coherence

$$\delta_g = 0 \text{ m/}\sqrt{\text{day}}, T \to \infty$$

 $\gamma_\infty = \frac{\sqrt{\mu_1 \mu_2}}{\sqrt{(\mu_1 + 1)(\mu_2 + 1)}}$

Vegetation-layer coherence

$$\gamma_v = \gamma_g rac{p(e^{qh} - 1)}{q(e^{ph} - 1)}$$

$$q = p - rac{1}{2} \left(rac{4\pi}{\lambda}
ight)^2 rac{\delta_v^2 - \delta_g^2}{h_r} T$$

 $p = \frac{2\kappa}{\cos\theta}$

(Lavalle, M. et al., 2012; 2023)

Forest Parameters Retrieval Algorithm Development

Forest parameters estimation is attained through a 3-step procedure which involves the inversion of RMoG model and Water Cloud Model (WCM) over the LiDAR GEDI samples of vegetation height

3-Stage Forest Parameter Estimation from Time-Series of InSAR Coherence

→ THE EUROPEAN SPACE AGENCY

· ecsa

Tree Height Retrieval from Sentinel-1 InSAR Coherence Time-Series

Input dataset :

Global 3-arcsec **C-band Sentinel-1 data set** (Kellndorfer et al., *Nature Sci. Data* 2022)

Next step

Extend the analysis to **L-band InSAR time-series** in view of upcoming global interferometric datasets from NISAR and ROSE-L missions

Estimated Tree Height - 90 m resolution map

M. Lavalle, et al., "Model-Based Retrieval of Forest Parameters From Sentinel-1 Coherence and Backscatter Time Series," in *IEEE Geos. and Rem. Sens. Lett.* vol. 20, pp. 1-5, 2023

📕 🚍 🚃 🛶 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🚛 🚱 🛌 📲 🚼 🛨 🖬 🖬 👘 🖓

L-Band Dataset| ALOS-2 Interferometric Coherence

Study area:

Spain, Asturias, Oviedo (Lon : -6.33°, -5.33°; Lat: 42.98°, 43.68°)

ALOS-2 DATA			
Obs. Mode	Orbit and Obs. direction	Revisit Time	Polarization
SM3 : Fine	ASCENDING - RIGHT	14 days	HV

Interferometric processing NASA JPL ISCE-2 software Number of SLCs: 9 Number of Interferograms: 36

→ THE EUROPEAN SPACE AGENCY

Study Site | Vegetation Species

ALOS-2 Coherence Sensitivity to Tree Height

Coherence decay over time at different vegetation height- Exponential Fitting

Decorrelation Effects

- Very short vegetation is more sensitive to the changes of soil moisture
- When h approaches 5-6 m the ground decorrelation becomes less significant
- Tall trees (h>10 m) are mostly affected by the movement of the scatterers within the canopy

 $\gamma_t = (\gamma_0 - \gamma_\infty) e^{-T/\tau} + \gamma_\infty$

$$\gamma_t = (\gamma_0 - \gamma_\infty) e^{-h/h_r} + \gamma_\infty$$

------ 14 days- Fit: $\gamma_0=0.54$, $h_r=38.76$, $\gamma_{\infty}=0.29$ ------ 56 days- Fit: $\gamma_0=0.41$, $h_r=35.24$, $\gamma_{\infty}=0.21$ ------ 98 days- Fit: $\gamma_0=0.32$, $h_r=25.51$, $\gamma_{\infty}=0.18$

🔚 🚞 🚥 🕂 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🚛 🚳 🍉 📲 👯 🚼 🛨 📰 📾 🛤 🛤 🌬 👘 > The European space agency

 $h = [10-20] \text{ m} - \gamma_0 = 0.53, \tau = 71.41, \gamma_{\infty} = 0.16$

 $h > 20 \text{ m} - \gamma_0 = 0.47, \tau = 73.75, \gamma_\infty = 0.12$

Forest Parameter Estimation Extinction Coefficient - κ

Ground-to-volume ratio μ_{∞} is derived from ALOS2 long-term coherence map γ_{∞} assuming μ unchanged between acquisitions

Values of canopy motion rate std δ_v (t) are obtained over GEDI L2 locations for each temporal gap by fitting the ALOS2 coherence with the **RMoG model**

RMoG Coherence $\gamma(t_1, t_2) = \frac{\sqrt{\mu_1 \mu_2} \, \gamma_g + \gamma_v}{\sqrt{(\mu_1 + 1)(\mu_2 + 1)}}$ Input **ALOS2** Time Series **Estimated Extinction** Estimated GTV ratio GEDI L2 tree height No Ground Decorrelation δ_{n} is the only unknown parameter

Estimated Canopy Motion Rate STD @ 14 days time interval

The Canopy motion rate STD δ_v increases over time

- At short-time intervals (<56 days) δ_v is approximately 1 $\frac{cm}{\sqrt{day}}$
- At long-time intervals (70 up to 112 days) δ_v is greater than 2 $\frac{cm}{\sqrt{day}}$ which **limits the coherence sensitivity to tree height**

→ THE EUROPEAN SPACE AGENCY

·eesa

Model-Based Estimation of Vegetation Height - *h*

ALOS-2 coherence time-series data set are fit with RMoG model to estimate tree height

Estimated Tree Height Map

RMoG model inversion is performed over the time-series of 14- up to 56days coherence maps which show the highest sensitivity to tree height

→ THE EUROPEAN SPACE AGENCY

Forest Parameters Estimation Performance Residuals

Training dataset

Tree height is well retrieved where δ_v is accurately estimated (slight bias: ~0.2 m)

Test dataset

- Good estimation performance for 10-20 m tree height
- Very short vegetation is overestimated whereas tall vegetation is underestimated

Error sources

Model assumptions, other uncompensated decorrelation effects, GEDI geolocation errors, low RMoG model sensitivity to tall stands, algorithm's design to be optimized

Estimated Tree Height vs GEDI RH100

→ THE EUROPEAN SPACE AGENCY

Forest Parameters Estimation Performance Model Fitting

14

→ THE EUROPEAN SPACE AGENCY

RMoG Model Fitting

- μ derived from γ_{∞} is likely to absorb the overestimation of short vegetation
- Overestimation of 42-, 56-days coherence is likely due to inaccuracy in δ_v estimation which affect the underestimation of tall stands
 - 14 days 0.6 0.6 h = 0-10 m14 days h = 10-20 m28 days 0.8h = 20-30 m42 days Modeled coherence h = 30-40 m56 days 0.6 0.40.2 0.2 0.50 0.25 0.75 0.2 10 15 20 30 35 5 25 40 28 56 14 42 Observed coherence h(m)Time interval (days)
- This effect can be mitigated by compensating for γ_{SNR} and μ changes over time This effect can be mitigated by improving the overall estimation strategy

Take-Home Messages and Future Work

- eesa
- The objective of this work is to define a model-based approach to estimate forest properties from the timeseries of interferometric coherence at near zero-spatial baseline
- Preliminary attempt to retrieve tree height from time-series of L-band InSAR coherence shows reasonably good performance for 10-20 m tree height but shorter and taller stands are not properly estimated
- **Future works** will address the opportunities to enhance the tree height estimation by:
 - improving the **pre-processing** of the data set
 - o relaxing some of the model **assumptions**, including other data layers and/or refining the RMoG model
 - o addressing the effect of topography and site's characteristics by comparing different study areas
 - optmizing/modifying the overall estimation strategy

L-BAND INTERFEROMETRIC COHERENCE TIME-SERIES FOR FOREST PARAMETERS RETRIEVAL

C. Telli^[1], M. Lavalle^[2], N. Pierdicca^[1]

¹ Sapienza University, Dept. of Information Eng., Electronics and Telecommunications ² Jet Propulsion Laboratory, California Institute of Technology

ESA UNCLASSIFIED - For ESA Official Use Only

🔲 🧮 📲 🚝 🔤 🚍 📲 📲 📲 📲 📲 📲 🚝 🔤 🔤 📲 📲 📕 📲 层 🖉