A Dual-frequency Approach to Detect Forest Height and Structure Using PolInSAR Technique

Samira Hosseini, Franck Garestier, Benoit Agnus

CNIS

WAEN AEN

Pol-InSAR Workshop 19-23th June

Problematic

Boreal forests constitute 1/3 of the world forest biomass

15% of the Earth's land surface

low biodiversity

sink-source distribution little-known

→ Pol-InSAR remote sensing for global carbon cycle

Technique

Objectives

Dual frequency approach

exploiting different interactions with forest:

penetration + scatterers

Forest heterogeneity in models

vertical structure detection:

AGB = height + structure

Objectives

Dual frequency approach

exploiting different interactions with forest: penetration + scatterers

Forest heterogeneity in models

vertical structure detection:

AGB = height + structure

Outline

I Data

II Forest structure inversion using GVB

III Results at L- and P-bands

IV AGB inversion strategy

V conclusion & perspectives

Data: BIOSAR

Remingstorp hemi-boreal forest

L- & -P band acquisition

Choice of the data

- min temporal decorrelation
- appropriate kz range

Different species

birches / pines / spruces etc.

DTM+DSM+ground measurements

Classical 2 layer forest represention

random volume + ground

Interferometric coherence of the volume

height: 0-40 m extinction: 0-2 dB/m

Random volume + ground = RVoG

Gaussian vertical backscatter + ground = GVBoG

Gaussian vertical backscatter + ground = GVBoG

can distinguish very different structure

specie "rough" discrimination

only relative elevation varies

different position of backscatter peak in the forest

 \rightarrow rotation in the complex plane

only the relative standard deviation varies

 \rightarrow radial migration in the complex plane (volume decorrelation)

structures

Usually, **structure** seen by SAR **varies with polarization** ↓ interferometric coherences not exactly on the same line

underlying ground phase estimated from LiDAR over bare surfaces ↓

no bias in the structure estimation for each polarization

Normalized standard deviation

Structure estimation at P-band

over the stands of accurate ground measurements (specie inventory by foresters)

Different signatures of the species

pine: backscatter from the top of the canopy

spruce: backscatter from the whole canopy

→ discrimination of the two main species

Results : forest height estimation at L-band

Low sensitivity to forest structure at L-band → secure height inversion

mean curve of HV channel = mean structure

 $\delta = 0.86 + 0.16\chi - 10.21\chi^2 + 166.17\chi^3 - 694.63\chi^4 + 1097\chi^5 \rightarrow$ injected in GVB for unique solution

Conclusion

Above Ground Biomass = height (L-band) + structure (P-band)

Using actual/near future **spaceborne** sensors (BIOMASS)

1/ evaluation of GVB for different forest types & conditions

2/ temporal behaviour of the inversion for better constraining the structure

3/ complementarity of higher frequencies (tandem X)

Thank you for your attention!

AGB inversion strategy

Initial goal of Pol-InSAR over forests

→ estimation of both **forest height** and **structure** for **above ground biomass** assessment

Over the boreal forests (1/3 of the world forest biomass) **→ polarimetric Dual-frequency approach**

spaceborne missions upcoming soon

P-band: BIOMASS (low frequency-short revisit) → biomass from height specie allometric L-band: TanDEM-L (no temporal decorrelation) relations

Results : Physical

The ground bias is

1/ lower at P-band than at L-band

2/ is minimum in HH-HV dual pol space

As ground phase estimation is independent of weather-phenology-temporal decorrelation

multi-baseline → increase of accuracy

Results : phase center vertical distribution

lower penetration random vertical sorting higher penetration deterministic vertical sorting