TOWARDS SNOW WATER EQUIVALENT RETRIEVAL USING INTERFEROMETRIC AND POLARIMETRIC SAR DATA

Kristina Belinska^{1,2}, Georg Fischer¹, Irena Hajnsek^{1,2} ¹Microwaves and Radar Institute, German Aerospace Center ²Institute of Environmental Engineering, ETH Zurich

Motivation

Snow Water Equivalent

Amount of liquid water contained within a snow pack
 → depth of water, if whole snow pack melted instantaneously

$$SWE = \frac{1}{\rho_w} \int_0^{Z_s} \rho_s(z) dz \approx Z_s \rho_s / \rho_w$$

Important Parameter for

Hydrological and climate models

Water resource planning

Flood predictions

https://www.sieker.de/en/fachinformationen/flood/hydrologic al-modelling.html

https://www.drax.com/about-us/our-sites-andbusinesses/cruachan-power-station/

https://www.wkbw.com/news/local-news/rain-snow-melt-floods-basements-of-orchard-park-homeowners

SAR data and test site

SAR

3

- TanDEM-X (TDX), X band
- Dual polarized data: HH and VV polarization
- Temporal baseline 11 days

In-situ measurements

- SWE measurements with a passive gamma ray sensor since 2019
- Temporal resolution: 6 hours

Jentzsch, K., Bornemann, N., Cable, W., Gallet, J. C., Lange, S., Westermann, S. and Boike, J. (2020): Near real-time observations of snow water equivalent for SIOS on Svalbard – (SWESOS), doi: 10.5281/zenodo.4146835

DInSAR model for SWE Estimation

Repeat pass SAR acquisitions

- Different dielectric properties in snow compared to air
 - \rightarrow Refraction of radar waves in the snow pack
 - → Different optical path length for snow compared to no snow conditions

Only dry snow

Snow	
Ground	

DInSAR model for SWE Estimation

• Path delay ΔR can be translated into an X-Band 60 C-Band interferometric phase difference L-Band 40 SWE change [mm] $\Delta \Phi_s = 2 \; \frac{2\pi}{\lambda} \; \Delta R$ 20 0 $\Delta \Phi_s = -2 k_i \Delta Z_s (\cos \Theta - \sqrt{\epsilon - \sin^2 \Theta})$ -20 -40 $\Delta R_{air,sc}$ -60 ϵ_{air} Air -2 -3 -12 $\Delta R_{air.s}$ 0 Interferometric Phase [rad] $\Delta R_{s,sc}$ ϵ_s Z_s Snow

S. Leinss et al.: Snow Water Equivalent of Dry Snow Measured by Differential Interferometry , 2015

Ground

5

DInSAR model for SWE Estimation

Limitations

- Temporal decorrelation
- Phase calibration
- Different phase delay for different polarizations
- $\Delta \Phi_s$ between $[-\pi, \pi] \rightarrow$ outside this interval phase wrapping errors

SWE Estimation using DInSAR Phase

- Only limited range of SWE change can be retrieved using the X-band measurements → [-8 mm, +8 mm]
- Underestimation of SWE changes above this threshold
- In-Situ measurements used to check if SWE change lies above phase wrap threshold
 - \rightarrow if yes, phase cycle is added
- Phase wraps are one of the main limitations

PolSAR CPD model for Snow Depth Estimation

Additional information about snow accumulation contained

in co-polar-phase difference

$$\Phi_c = \Phi_{VV} - \Phi_{HH}$$

 Different polarizations show different propagation speeds in anisotropic snow

- Fresh snow → more horizontally aligned ice grains
 → increasing CPD values
- Decreasing CPD values due to recrystallisation under temperature gradients

 \rightarrow CPD can detect snow fall events

 \rightarrow help to correct phase wraps

PolSAR CPD model for Snow Depth Estimation

- Snow model: ellipsoidal ice inclusions in air
- Assumption of snow anisotropy and density

 \rightarrow refractive indices for HH and VV

$$\Phi_{CPD} = (-1) \frac{4\pi}{\lambda} \Sigma Z_s \left(\sqrt{n_V^2 - \sin^2(\Theta)} - \sqrt{n_H^2 - \sin^2(\Theta)} \right)$$
$$\Delta \zeta(\rho, A, \Theta)$$

Leinss et al., Snow Height Determination by Polarimetric Phase Differences in X-Band SAR Data, 2014 Leinss et al. Anisotropy of seasonal snow measured by polarimetric phase differences

9

Leinss et al., Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series, 2016

PolSAR CPD model for Snow Depth Estimation

Advantages

- Less sensitive to phase wraps
- No absolute phase calibration necessary

Limitation for InSAR and PolSAR

Combination of Interferometric and Polarimetric Measurements – **Temporal Coherence region**

- Two PolSAR acquisitions
 - \rightarrow coherency matrices T_{11} and T_{22}
 - \rightarrow temporal PollnSAR matrix $\boldsymbol{\Omega}_{12}$

Temporal polarimetric coherence ρ

 $\rho(\omega_1, \omega_2) = \frac{\omega_1^H \mathbf{\Omega}_{12} \omega_2}{\sqrt{(\omega_1^H \mathbf{T}_{11} \omega_1)(\omega_2^H \mathbf{T}_{22} \omega_2)}}$

 $\omega \rightarrow$ unitary vectors of polarization states

TDX

Jun Ni et al., Multitemporal SAR and Polarimetric SAR Optimization and Classification: Reinterpreting Temporal Coherence, 2022

Combination of Interferometric and Polarimetric Measurements – Model Scattering Matrix

 $[S_P] = [P_2][S][P_2]^T$

- $S \rightarrow$ Scattering Matrix
- Scattering Matrix of Corner Reflector
 S =

 $S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

 $P_{2} \Rightarrow \text{Propagation Matrix} \qquad P_{2} = \begin{bmatrix} \exp(i\kappa_{H}r) & 0 \\ 0 & \exp(i\kappa_{V}r) \end{bmatrix} \qquad \kappa = \frac{2\pi}{\lambda} \left(\cos\theta - \sqrt{\epsilon - \sin^{2}\theta} \right)$ $\epsilon_{HH} \text{ and } \epsilon_{VV} \text{ from snow anisotropy model}$

Temporal Coherence Region

• A = 0.2
•
$$\rho = 0.2 \frac{g}{cm^3}$$

• R1 = 1 cm

DInSAR phase

15

Temporal Coherence Region

270°

DLR

 \bigcirc

16

270°

DInSAR phase

 Increasing difference between VV and HH

- A1 = 0.1
- A2: anisotropy at 2. acquisition

 Similar behavior as for snow depth change

- A1 = 0.1
- A2: anisotropy at 2. acquisition

Temporal Coherence region

Summary and Outlook

Summary

- Modeling of coherence regions for snow depth and anisotropy changes
- Behavior of simulated coherence regions similar to real data
- Phase extent higher sensitivity than CPD

Next Steps

- Not yet possible to separate anisotropy and snow depth change
 → Further investigation of the influence of snow changes on different polarization states
- Establishment of a retrieval based on coherence region parameters

TOWARDS SNOW WATER EQUIVALENT RETRIEVAL USING INTERFEROMETRIC AND POLARIMETRIC SAR DATA

Kristina Belinska^{1,2}, Georg Fischer¹, Irena Hajnsek^{1,2} ¹Microwaves and Radar Institute, German Aerospace Center ²Institute of Environmental Engineering, ETH Zurich

Temporal Coherence Region

90°

270°

135°

.

2250

180°

• A = 0.2
•
$$\rho = 0.2 \frac{g}{cm^3}$$

• r1 = 1 cm

