

The dynamics of the Amazon forests and the role of forest structure - linking remote sensing and vegetation modelling -

Andreas Huth^{1,2,3,} Edna Roedig¹, Nikolai Knapp¹, Rico Fischer¹, Luise Bauer, Kostas Papathanassiou⁴, Friedrich Bohn¹

 ¹Helmholtz Centre for Environmental Research, Leipzig, Germany
²University of Osnabrück, Germany
³iDivGerman Centre for Integrative Biodiversity Research, Leipzig
⁴ German Aerospace Center (DLR), Oberpfaffenhofen

> HELMHOLTZ ZENTRUM FÜR UMWELTFORSCHUNG UFZ

Forests in the global carbon cycle

Currently vegetation is a carbon sink! 2.6 Gt C / yr (increase of carbon in atmosphere 4 Gt C/ yr, IPCC 2021)

Climate change can modify productivity of vegetation:

- Europe 2003 drought: 30 % decrease of productivity, vegetation changed from Csink into C-source: from 0.3 to -0.5 GtC (Cias et al. 2005, Nature)
- Amazon 2005/2010/2015 drought: forests transform from C-sink into C-source, from 0.4 to -1.2 GtC (Phillips et al. 2009, Science, Lewis et al. 2011, Nature, Qin et al. 2021, Nature CC)
- Higher mortality rates of trees: no global quantification (van Mantgem 2009 Science, Anderegg PNAS 2012)

Does vegetation act as a carbon sink

also in future ?

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ

forest simulations

50 years tradition of forest gap models exploring:

- forest dynamics and growth
- forest biomass, forest structure and species compositions

The Amazon rainforest

FORMIND the forest model

remote

sensing

rest

nventorie

A and

Des

impact of disturbances

forest gap models : Shugart 1998, CUP Shugart et al. 1918, ERL review Formind: Fischer/Huth... 2016, Ecol Mod

Tropical mountain forest (Ecuador, FORMIND simulations)

Overall biomass

Biomass in the Amazon rainforest

Rödig et al. 2017, Global Ecol Biogeogr

Biomass in the Amazon rainforest

Rödig et al. 2017, Global Ecol Biogeogr

Biomass in the Amazon rainforest

Structure of the Amazon rainforest

FORMIND simulations combined with forest height from ICESAT Lidar

tree size distribution for the whole Amazon total tree number:

410 bill. trees (dbh >10 cm)

Rödig et al. 2018, Env Research Let Rödig et al. 2017, Global Ecol Biogeogr

>36 34

32

30

28

26

24

22

20

18

<16

 \mathbf{a}^{-1}

GPP [tC ha^{-1}

Rödig et al. 2018, Env Research Let ^{*} Rödig et al. 2017, Global Ecol Biogeogr

Net ecosystem productivity (NEP)

 total estimated carbon uptake of Amzaon forests: 0.6 Gt yr⁻¹ (growth of forest)

>5

3

2

1

<-5

ource

NEP [tC ha $^{-1}$ a $^{-1}$

• without land-use the Amazon forests is a relevant carbon sink

Integrating full Lidar profiles into the forest modeling framework

- approach: for every profile we filter the forest states (from succession simulations) which fits with the profiles
- from this we derive probability distributions for forest biomass at every location

(thanks to Tang, Dubayah for Lidar profiles, Tang et al. 2017 PNAS)

Integrating full Lidar profiles into the forest modeling framework for the Amazon

(Gedi 100 million profiles, IceSat 1 million profiles)

remote sensing

Article Mapping Amazon Forest Productivity by Fusing GEDI Lidar Waveforms with an Individual-Based Forest Model

Luise Bauer ^{1,*}, Nikolai Knapp ^{1,2} and Rico Fischer ¹

From small-scale forest structure to Amazon-wide carbon estimates

Edna Rödig ¹²⁺, Nikolai Knapp¹, Rico Fischer ¹, Friedrich J. Bohn¹, Ralph Dubayah³, Hao Tang ³ & Andreas Huth^{14,5}

MDPI

Rödig et al. 2019, Nature Com Bauer et al. 2021, Remote Sensing

Forest productivity maps for the Amazon 2021 using GEDI Lidar profiles and forest modelling

(110 million profiles)

Estimated mean GPP for Amazon forests is 22 tC/(ha yr). Similar analysis can be done also for other forest attributes: biomass, basal area, NPP, NEE...

Bauer et al. 2021, Rem Sens Roedig et al. 2019, Nat Com Roedin et al. 2018, ERL

Forest productivity maps for the Amazon 2021 using GEDI Lidar profiles and forest modelling

(110 million profiles)

Relations between forest biomass, productivity and structure can be explored (resolution 1 km²).

Forest with low height complexity show high productivity (GPP) and these forests are often a carbon sink (NNE >0).

Bauer et al. 2021, Rem Sens Roedig et al. 2018, ERL

Analyzing the information content of full Lidar profiles (one million Liadar profiles, Icesat, Amazon rain forest)

States of forests with not to small heights could be detected quite well (CV ≈ 0.2) Rödig et al. 2019, Nature Com

Analyzing the information content of full Lidar profiles (one million Liadar profiles, Icesat, Amazon rain forest)

Basal area could be detected even better than biomass.

Analyzing the information content of full Lidar profiles (one million Liadar profiles, Icesat, Amazon rain forest)

Forest productivity NPP could be detected quite well.

Summary

- We applied a forest gap model (FORMIND) to the Amazon (every tree in the Amazon is simulated, in total 410 bill. trees) www.formind.org
- We developed a novel framework to integrate remote sensing products into forest modelling
 - remote sensing data (e.g. forest height) is used a filter (selection of states from forest succession simulations)
 - the filtered states can be used to derive important forest attributes (e.g. biomass, basal area, GPP, NEP) at high spatial resolution (e.g. 1 ha, 0.25 ha)
- this has several advantages:
 - (a) remote sensing of forest structure allows us to consider also disturbed forest states (e.g. forests with low height)
 - (b) validation experiments are possible without 'mixing' spatial scales
 - (c) integration of different remote sensing products is possible (Lidar, Radar, optical, Henninger/Huth 2023, RS) (e.g. Radar: Tandem-X, Biomass, Tandem-L....)

Many thanks!

Integrating full Lidar profiles into the forest modeling framework

40C

30 CV = 0.52Icesat 40 25 Simulated Height [m] Frequency 12 10 5 10 0.02 0.04 0.06 0.08 200 300 100 Above-ground biomass Relative energy [tC ha⁻¹ a⁻¹]

Example 2

some profiles can be related to forest states which have quite different biomass values

Results can be also used to explore
relationships between different forest attributes

>36

34

32

30 28

26 24 22

20

18

<16

 \mathbf{a}^{-1}

GPP [tC ha^{-1}

Rödig et al. (2018), Env Research Let Dolmann (2018)), Env Research Let