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Forests in the global
carbon cycle

Currently vegetation is a carbon sink! 26 Gtc/yr
(increase of carbon in atmosphere 4 Gt C/ yr, IPCC 2021)

Climate change can modify productivity of vegetation:

- Europe 2003 drought:
30 % decrease of productivity, vegetation changed from C-
sink into C-source:
from 0.3 to -0.5 GtC
(Cias et al. 2005, Nature)

- Amazon 2005/2010/2015 drought:
forests transform from C-sink into C-source,

from 0.4 to -1.2 GtC

(Phillips et al. 2009, Science, Lewis et al. 2011, Nature, Qin et al. 2021, Nature CC)

- Higher mortality rates of trees:

no global quantification
(van Mantgem 2009 Science, Anderegg PNAS 2012)
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The Amazon rainforest
; AFORMIND

the forest model
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| « forest dynamics and growth
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 impact of disturbances
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Tropical mountain forest (Ecuador, FORMIND simulations)

Overall biomass

—

g 150 -
E.100-
8
: 50 -
oM 0- T T T T T
0 50 100 150 200
Time [y]
PFT-specific biomass
g 80 -
. 60
B 40+
£ 20
5 :
m 07 | | | I
0 50 100 150 200
Time [y]
Ridge forest 1900- PFT 1 _ _
2100 m asl fast growing species
(forest type I,
). Hometer) PPl 3 } medium growing species
PFT 4 Jrowing sp
PFT 6 ¢ Slow growing species
PFT 7

Puetz et al. 2014, Nat Comm
Snell, Huth et al. 2014, Ecography
Dislich ét al. 2013, Ecol Model

ww. FORMIND org



Regionalization of the forest model

based on field data analysis
mortality rates depend on local climate and
soil properties

climate and soil properties
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Vegetation modelling
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Using remote sensing as filter
for forest simulations

simulated local forest dynamics
(scale 1 ha, including local climate and soil cond.)
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Above-ground
biomass [t/ha]
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Biomass in the Amazon rainforest

forest biomass map of current

Amazon rainforest

(based on linking remote sensing and forest
modelling)
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including forest height information
from remote sensing (incl.
disturbed forests)
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Biomass in the Amazon rainforest

forest biomass map of current

Amazon rainforest
(based on linking remote sensing and forest

modelling)
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Above-ground
biomass [t/ha]
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Biomass in the Amazon rainforest

forest biomass map of current

Amazon rainforest
(based on linking remote sensing and forest
modelling)

comparison with 114 field plots
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Structure of the Amazon rainforest

FORMIND simulations combined
with forest height from ICESAT Lidar
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Forest productivity in the Amazon
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Net ecosystem productivity (NEP)

 total estimated carbon uptake
of Amzaon forests: 0.6 Gt yr'
(growth of forest)

0 « without land-use the Amazon forests is
a relevant carbon sink

NEP [tC ha ! a!]
Source




Integrating full Lidar profiles into the forest
modeling framework

Example 1
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« approach: for every profile we
filter the forest states (from

succession simulations) which fits
with the profiles

« from this we derive probability
distributions for forest biomass at
every location

(thanks to Tang, Dubayah for Lidar profiles, Tang et al. 2017 PNAS)

Above-ground biomass [t/ha]
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Integrating full Lidar profiles into the forest
modeling framework for the Amazon

(Gedi 100 million profiles, lceSat 1 million profiles)

% remote sensing m\[)\r-y

Article

Mapping Amazon Forest Productivity by Fusing GEDI Lidar 7@(\/\
Waveforms with an Individual-Based Forest Model Q&gg{};mmém

Luise Bauer ¥, Nikolai Knapp "2 and Rico Fischer !

From small-scale forest structure to Amazon-wide
carbon estimates

Edna Ridig» ***, Nikelai Knapp', Rico Fischer(®’, Friedrich J. Bohn!, Ralph Dubayah?®, Hac Tang®? &
Andreas Huth™@=
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Forest productivity maps for the Amazon 2021
using GEDI Lidar profiles and forest modelling

(110 million profiles)
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derived GPP distribution
for the Amazon (2021)
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Estimated mean GPP for Amazon forests is 22 tC/(ha yr).

Similar analysis can be done also for other forest attributes: 5 o; ot ar 2021, Rem Sens

biomass, basal area, NPP, NEE... Roedig et al. 2019, Nat Com
Roedin et al. 2018, ERL




Forest productivity maps for the Amazon 2021
using GEDI Lidar profiles and forest modelling

(110 million profiles)
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Relations between forest biomass, productivity and structure
can be explored (resolution 1 km?).
Forest with low height complexity show high productivity (GPP)

and these forests are often a carbon sink (NNE >0). Bauer et al. 2021, Rem Sens
Roedig et al. 2018, ERL
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Analyzing the information content of
fu I I L i dar p I’Ofi Ies (one million Liadar profiles, Icesat, Amazon rain forest)

www FORMIND org
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States of forests with not to small heights could be detected quite well
(CV=0.2)
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Analyzing the information content of
fu I I L i dar p rOfi |eS (one million Liadar profiles, Icesat, Amazon rain forest)

win FORMIND org
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Basal area could be detected even better than biomass.
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Analyzing the information content of
fu I I L i dar p rOfi |eS (one million Liadar profiles, Icesat, Amazon rain forest)

ww. FORMIND org
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Summary

We applied a forest gap model (FORMIND)
to the Amazon (every tree in the Amazon is simulated, in
total 410 bill. trees) www.formind.org

We developed a novel framework to integrate remote
sensing products into forest modelling

— remote sensing data (e.g. forest height) is used a
filter (selection of states from forest succession
simulations)

— the filtered states can be used to derive important
forest attributes (e.g. biomass, basal area, GPP, NEP)
at high spatial resolution (e.g. 1 ha, 0.25 ha)

this has several advantages:
(a) remote sensing of forest structure allows us to
consider also disturbed forest states (e.g. forests
with low height)

(b) validation experiments are possible without ‘mixing’
spatial scales
(c) integration of different remote sensing products is

possible (Lidar, Radar, optical, Henninger/Huth 2023, RS)
(e.g. Radar: Tandem-X, Biomass, Tandem-L....)

Height (m)
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Integrating full Lidar profiles into the forest

modeling framework

Example 2
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Exploring relationships between
different forest attributes
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