Deep Learning based Enhancement of TomoSAR Stacks

Presenting: Sergio Alejandro Serafin Garcia

Authors: Sergio Alejandro Serafin Garcia, Matteo Nannini, Gustavo Daniel Martin Del Campo Becerra, Ronny Hänsch, Andreas Reigber

Knowledge for Tomorrow

Organization: German Aerospace Center (DLR)

TomoSAR geometry

DLR.de • Chart 3

Enhancement of the TomoSAR stack

Enhanced TomoSAR stack

Experiment details

96x96

Inputs:

The SLC image from each baseline is represented with **3 channels**:

- Log(amplitude + 1)
- Normalized Real part
- Normalized Imaginary part

Outputs:

The estimated SLC is represented with **2 channels**:

- Phase
- Log(amplitude + 1)

- L-band (0.24 m wavelength)
- HH polarization

0

-5

-10

-15

-20

-25

- Resolution of 1.66 m in range
 - Resolution of 0.80 m in azimuth

Track	Flight altitude [m]
1	12500
2	12500 + 30
3	12500 + 90
4	12500 + 160
5	12500 + 240
6	12500 + 400
7	12500 + 600

Experiment details

96x96

Inputs:

The SLC image from each baseline is represented with **3 channels**:

- Log(amplitude + 1)
- Normalized Real part
- Normalized Imaginary part

Outputs:

The estimated SLC is represented with **2 channels**:

- Phase
- Log(amplitude + 1)

- L-band (0.226 m wavelength)
- HH polarization

0

-5

-10

-15

-20

-25

- Resolution of 1.3 m in range
- Resolution of 0.6 m in azimuth
- Nominal height of **3720 m**
- 15 tracks evenly distributed in a synthetic aperture of 70 m

UAVSAR results

FSAR results

FSAR results

Interferometric validation

International Congress Center Munich

Phase subtraction of artificial and original 4BL

Interferometric validation

International Congress Center Munich

Interferometric coherence 4 BL Original and Artificial Interferogram 1 BL original and 4 BL artificial

DLR.de · Chart 12

Tomographic experiments FSAR

Conclusion

- According to the interferometric experiments made. The estimation of the phase is good enough in certain areas to perform tomography. Nonetheless, some problems need to be address before that.
- A decrees of the RF interference was observed in estimated SLCs
- First tomographic experiments show a small improvement.
- There is still work to do towards make the tomograms work when estimating more than one baseline.

Thanks!!!

Knowledge for Tomorrow