

THE EUROPEAN SPACE AGENCY

Sensitivity of different scattering mechanisms to soil moisture and vegetation over corn fields in Argentina

Giovanni Anconitano^a, Olena Sarabakha^a, Si Mokrane SIAD^a, Nazzareno Pierdicca^a, Lorenzo G. Papale^b, Leila Guerriero^b, Mario A. Acuña^c

^aDepartment of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Rome, Italy; ^bDepartment of Civil Engineering and Computer Science Engineering (DICII), Tor Vergata University of Rome, Rome, Italy; ^cComisión Nacional De Actividades Espaciales (CONAE), Buenos Aires, Argentina

ESA UNCLASSIFIED - For ESA Official Use Only

Objectives

- To evaluate the capability of a fully polarimetric radar system to highlight the sensitivity to soil moisture variation and vegetation changes by analysing a time-series of SAR data collected at L-band by the SAOCOM-1A mission over an agricultural area in Argentina (Monte Buey, Córdoba Province).
- To apply four polarimetric SAR decompositions (Freeman-Durden FD [1], van Zyl VZ3 [2], Generalized Freeman-Durden FDG [3] and Yamaguchi Y4R [4]) to a stack of measured covariance matrices extracted from the SAOCOM data and identify canonical scattering mechanisms (surface, double-bounce, volume).
- To compare the scattering contributions from the polarimetric decompositions with those obtained by the simulations of the fully polarimetric electromagnetic model developed at Tor Vergata University.

- [2] J. J. van Zyl, "Application of Cloude's target decomposition theorem to polarimetric imaging radar data", Optics & Photonics, 1993.
- [3] S. R. Cloude, "Decomposition theorems," in *Polarisation: Applications in remote sensing*, 2010, pp. 198-201.
- [4] Y. Yamaguchi, A. Sato, W. Boerner, R. Sato, H. Yamada, "Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2251-2258, June 2011.

^[1] A. Freeman, S. L. Durden, "A Three-Component Scattering Model for Polarimetric SAR Data", IEEE Trans. Geosci. Remote Sens., vol. 36, May 1998.

Methodology - The Tor Vergata Model

The **Tor Vergata Model** is based on the radiative transfer theory applied to discrete scatterers with simple shapes [5] and specific absorbing and scattering properties to model the plant structure elements.

The model takes as input:

- sensor configuration (signal frequency, incidence angle, polarization);
- soil properties (soil moisture and roughness);
- vegetation parameters (plant height and scatterers properties).

The "Matrix doubling" algorithm [6] models the scattering interactions of any order (e.g., attenuation and scattering — effects) between each layer and sublayer.

[5] L. G. Papale, F. Del Frate, L. Guerriero and G. Schiavon, "A Physics-Based ML Approach for Corn Plant Height Estimation with Simulated Sar Data," *IGARSS 2022 - 2022 IEEE IGARSS Symposium*.

[6] M. Bracaglia, P. Ferrazzoli, and L. Guerriero, "A fully polarimetric multiple scattering model for crops," Remote Sens. Env., pp. 170-179, 1995.

Methodology - Polarimetric SAR decompositions

The covariance matrix C3 is modeled as a combination of scattering mechanisms.

Sketch of the three scattering mechanisms: canopy scatter (top), double-bounce scatter (middle) and surface scatter (bottom) [1].

Decomposition	Туре	C ₃ matrix / powers
FD	Model-based	
VZ	Eigenvalues/eigenvectors based	$C_3^{tot} = C_3^{surf} + C_3^{dbl} + C_3^{vol}$ $P_{tot} = P_{surf} + P_{dbl} + P_{vol}$
GFD	Hybrid	
Y4R	Model-based	$C_3^{tot} = C_3^{surf} + C_3^{dbl} + C_3^{vol} + C_3^{hel}$ $P_{tot} = P_{surf} + P_{dbl} + P_{vol} + P_{hel}$

Main characteristics of the 4 polarimetric decompositions considered for the analysis

Workflow

Definition and **collection** of the **input** for both the **EM Tor Vergata model** and the **polarimetric SAR decompositions** (a **time-series** of **geocoded C3 matrices** extracted from **L-band full-pol SAOCOM-1A** images).

Simulations of the EM Tor Vergata model and application of 4 different polarimetric decompositions (FD, VZ3, FDG, Y4R).

Extraction of scattering mechanisms (surface, doublebounce, volume): powers for all the four decompositions and multi-polarization backscattering coefficient (HH, VV) for FD and VZ3.

Comparison between the **results** obtained from the **TV model** and the application of the **polarimetric SAR decompositions**.

→ THE EUROPEAN SPACE AGENCY

·eesa

Case study and datasets

- A time-series of SAOCOM-1A SLC descending images (October 2019 February 2020).
- **5 corn fields** (ID: B18, B19, B22, B23, B24) over an agricultural area in the **Monte Buey site** (Córdoba Province, Argentina).
- Field campaign conducted by CONAE to collect insitu data such as soil moisture, plant height, and growth stage.
- The NDVI derived from Sentinel-2 and linearly interpolated into the SAOCOM dates is also used as a proxy of the vegetation.

SAOCOM-1A acquisitions			
13/10/2019	30/11/2019	17/01/2020	
29/10/2019	16/12/2019	02/02/2020	
14/11/2019	01/01/2020	18/02/2020	

Site of interest: it is a core validation site for the SMAP mission and the validation of the SAOCOM products generated by CONAE.

Tor Vergata model: parameters estimation

Plant height derivation

The **Growth Stage** (**GS**) missing values are derived by interpolating measured data with a **sigmoid** function.

Consequently, a relation between **GS** and **Plant height** is derived.

CETT ON Monte Buey Poly. (CETT)

Surface roughness estimation

The optimal surface roughness is derived by looking at which value returns the minimum Root Mean Square Error between the measured SAOCOM data and the modeled backscattering coefficient.

7

Tor Vergata model: simulated and measured data

Integration of measured soil moisture

Tor Vergata model: simulated and measured data

Tor Vergata model: simulated and measured data

- Once all the input data are defined, a point by point comparison was performed.
- The simulated data follow the same dynamic range of the SAOCOM data.
- The lowest backscattering coefficients correspond to bare soils and the highest to well developed fields.
- The highest RMSE is obtained for field B23.
- In general, the model slightly underestimates the backscatter values. An unbiased RMSE equal to 2.15 dB is obtained.

→ THE EUROPEAN SPACE AGENCY

·eesa

Evolution of polarimetric decompositions

-VZ3 dbl

SM

van Zyl

PolSAR - TV model comparison based on NDVI and SM

- For the double-bounce power, there is a good agreement between the results for medium and high NDVI values while, for the surface power, when the NDVI is low there is a good agreement between the results except for a bias.
- When the vegetation is high the polarimetric decompositions return higher soil values.

PolSAR - TV model comparison: Sigma0-HH

- In the HH polarization, the results are similar to those obtained with the powers for double-bounce and volume.
- There is a slight difference with respect to the powers for the surface component: the points of the scatterplot seem to be closer to the one-to-one line.
- HH The component presents the same trends previously seen: as double-bounce and volume agree for welldeveloped vegetation. while surface has better for accordance low vegetation.

PolSAR - TV model comparison: Sigma0-VV

- In the VV polarization, the behaviour of double-bounce and volume components are consistent with the HH polarization.
- The main difference lies in the surface component: the model seems to apply a much higher attenuation [~10dB] with respect to the decompositions.
- The higher attenuation in the VV polarization with respect to the HH polarization can be related to the way the model represents the corn stalks.

PolSAR - TV model comparison: Sigma0-HV

- In the HV polarization, the surface and double-bounce components are theoretically null for both decompositions. the In able order to be to the them to compare model. an arbitrary low [-50dB] value has been assigned both to the components of decompositions.
- On the other hand, the model provides significant values for surface and double-bounce in the HV polarization.
- Besides a bias, there is a good agreement for the volume component.

Conclusions and future works

Conclusions:

- Concerning the surface scattering, the TV model and the polarimetric decompositions show a fairly good agreement when the vegetation is not well-developed and plant height is low.
- Both volume and double-bounce from the TV model and the polarimetric decompositions show a fairly good agreement when the plant is developed.
- It can be observed that the model provides a higher attenuation, due to the presence of the vegetation, especially for the VV polarization.
- The polarimetric decompositions don't take into account the contribution of the cross-polarization HV for the surface and double-bounce scattering mechanisms.

Future works:

- Application of other polarimetric SAR decompositions to the SAOCOM data.
- Use of semi-empirical models, such as the Water Cloud Model, to simulate the different scattering mechanisms.
- Application of the polarimetric decompositions to a set of simulated covariance matrices.

📲 🚍 💳 🕂 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔤 🖛 🚳 🛌 📲 🕄 🖬 📲 🗮 🗰 🖓

Conclusions and future works

Thank you for your attention!

💳 🔜 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🔤 💏 🔤 🚱 🚱 🚱 👫