POLARIMETRIC PARAMETER ACCURACY REQUIREMENTS OF SPACEBORNE SAR FOR THE OBSERVATION OF MID-LATITUDE IONOSPHERE ACTIVITIES

Jun Su Kim¹⁾, Hiroatsu Sato²⁾, and Kostas Papathanassiou¹⁾
1) Microwaves and Radar Institute, DLR
2) Institute of Solar-Terrestrial Physics, DLR

SAR for Ionospheric Monitoring

High-latitude

- Strong scintillation effect over auroral oval due to precipitation of charged particles
- High sensitivity of FR to TEC
- Perpendicular alignment of the geomagnetic field to the orbit direction

 ▲ Azimuth subband shift estimated
 over Tromsø
 -30 m to 30 m

Low-latitude

- Strong scintillation over post-sunset sector along plasma bubble
- Insensitivity of Faraday rotation to TEC ~ low FR level
- Strong Squint-FR relation
- Parallel alignment of the geomagnetic field to the orbit direction

▲ Backscatter power modulation due to plasma bubbles over Amazon forest (=8 dB to -6 dB)

Mid-Latitude Ionospheric Disturbance

- Travelling lonospheric Disturbance (TID)
- Waves of ionospheric undulation with < 1 TECU amplitude or less, and hundreds kilometer wavelengths.
- Observed from the systems of GPS networks.

(Courtesy: Hiroatsu Sato @ DLR SO)

Footprints of ALOS-2/PALSAR-2 acquisition and GPS receiving stations (GEONET) over East Japan

Azimuth direction

Acquisition on 2020.08.18 ($\vec{k}_{p}(t_{1})$, where $t_{1} = t_{0} + 364$ days)

Difference $(\vec{k}_p(t_1) - \vec{k}_p(t_0))$

Estimation of FR

- Rotation of the polarization plane on linear basis.
- Phase difference of two circular waves on circular basis.
- FR is measured in terms of phase on circular basis: Bickel & Bates estimator.
- Estimated from quad-pol data as

$$4\Omega = \arg \langle S_{lr} \cdot S_{rl}^* \rangle$$

where

<u>},(⊫»</u>∎**rn (€ (∆ (⊇**)))

$$\begin{pmatrix} S_{rr} & S_{lr} \\ S_{rl} & S_{ll} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} S_{hh} & S_{vh} \\ S_{hv} & S_{vv} \end{pmatrix} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$

• FR is directly proportional to TEC (integrated number density of free electrons) and, $\vec{B} \cdot \hat{\kappa}$ (parallel component of geomagnetic field to LOS).

$$\Omega = \zeta \frac{e\vec{B}\cdot\hat{\kappa}}{cmf^2}TEC$$

FR Estimates

Acquisition on 2019.08.20 (t_0)

 Azimuth ambiguity visible over ocean
 -0.2
 -0.1
 0.0
 0.1
 0.2

ΔFR [°]

Azimuth ambiguity visible over ocean Pixel-wise overestimation at urban region Overestimation in 5th frame

Conversion from FR to TEC

Acquisition on 2019.08.20 (t_0)

Interferograms

Interferogram ($\Delta t = 364$ days)

Alignment of fringes to the projection of geomagnetic field Around three cycles of interferometric phase Low coherence due to long temporal baseline

Differential TEC: Split Spectrum Method

Dispersive nature of the ionosphere

$$\phi = \frac{4\pi\zeta}{cf}\Delta TEC$$

The separation of ionospheric and non-dispersive contribution

$$\Delta \phi_{iono} = -\frac{f_0}{4\Delta f} \Delta \phi + \frac{1}{4} \Sigma \phi$$
$$\Delta \phi_{ndis} = \frac{f_0}{4\Delta f} \Delta \phi + \frac{1}{4} \Sigma \phi$$

where $\Delta \phi = \Delta \phi_H - \Delta \phi_L$, and $\Sigma \phi = \Delta \phi_H + \Delta \phi_L$.

• @ ALOS-2 PALSAR-2, $f_0 = 1.236$ GHz, $\Delta f = 13$ MHz.

Split Spectrum Method

Higher frequency interferogram ($f_{up} = 1.249 \text{ GHz}$)

Lower frequency interferogram ($f_{dn} = 1.223$ GHz)

Ionospheric phase from TEC difference $(TEC(t_1) - TEC(t_0))$

 $= \frac{1}{2} = \frac$

Extracted ionospheric phase is similar to that from the FR difference.

Mid-latitude lonospheric Disturbance is ...

- Detectable using both polarimetry and interferometry.
- The differential TEC estimates from two methods are consistent.
- Identified problems:
 - A discontinuity at 5th frame in both polarimetry and interferometry.
 - There are strong azimuth ambiguity visible over ocean.
 - Consistent spiky FR biases over urban area.

NESZ Estimates

Acquisition on 2019.08.20 (t_0)

Estimated from the 4th eigenvalue of cov. matrix. Strong azimuth ambiguity over ocean. Their difference changes with azimuth time.

No special issue associated with 5th frame

Spiky Bias of FR Estimation

Acquisition on 2019.08.20 (t_0)

- Bias of FR estimate are consistent.
- Azimuth ambiguity of strong target interferers.
- Source of estimation bias are analysed in detail.

Practice of B&B Estimator

FR in Bickel & Bates estimator

$$\Omega = \arg \langle S_{lr} \cdot S_{rl}^* \rangle$$
 ,

where

$$\begin{pmatrix} S_{rr} & S_{lr} \\ S_{rl} & S_{ll} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} S_{hh} & S_{vh} \\ S_{hv} & S_{vv} \end{pmatrix} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$

• Distribution of $S_{lr} \cdot S_{rl}^*$ in an estimation window: \times is the mean of distribution

New FR Estimator

- Try to fit the distribution of $S_{lr} \cdot S_{rl}^*$ to a ray passing the origin with slope $\tan \theta$ $x \sin \theta - y \cos \theta = 0$
- Minimum square error method finds out such a relation

$$\sin 2\theta \sum_{k} (x_k^2 - y_k^2) - \cos 2\theta \sum_{k} 2x_k y_k = 0$$

Then,

$$8\Omega = \arg\left(\sum_{k} \left(x_k^2 - y_k^2\right) + i\sum_{k} 2x_k y_k\right)$$

where x_k and $y_k \in \mathbb{R}$ are real and imaginary parts of $S_{lr} \cdot S_{rl}^*$, respectively.

• Subscript *k* indicates *k*-th pixel in the estimation window.

New FR Estimator

- Spiky biases are largely suppressed.
- But noisier than original estimator.
- Potentially applicable to urban conditions.

Doubled wrapping cycle. Less optimal to lower frequency systems.

Estimation of Azimuth Sub-band Shift

Acquisition on 2019.08.20 (t_0)

▲ Azimuth direction subband shift (¬1 m to 1 m)

- At L-band 10 mTECU/ km ionospheric gradient induces 0.25 m azimuth shift.
- Azimuth sub-band shift estimate indicates quite non-quiet ionosphere.
- They are well aligned with projected geomagnetic field line (red lines).
- Geomagnetism seems govern the small scale ionospheric dynamics.
- Their effects are not visible either on polarimetric nor on interferometric ionosphere estimates.
- SAR is the only tool that can map the ionosphere with km-level resolution.

Conclusion and Remarks

- Mid-latitude ionospheric activity is observed by @ L-band.
- Polarimetric method and interferometric method yield consistent results.
 - Differential TEC levels are estimated from the FR difference, and from the dispersion on the interferogram.
 - A wave of ionospheric disturbance with amplitude of 0.5 TECU and wavelength 200 km was observed.
- A new FR estimator less sensitive to the az. ambiguity is proposed.
 - Hinted from the behavior of spiky bias of FR estimates due to azimuth ambiguity from strong urban scatterers.
 - New method presents higher level of noise, but suppresses spiky biases.
- Kilometer-scale ionospheric irregularities exist, and observed by using the azimuth sub-band shift estimation.
 - Conventional polarimetric or interferometric methods cannot detect them.
- Conventional ionosphere monitoring tools also cannot observe them.

THANK YOU VERY MUCH FOR YOUR ATTENTION AND JAXA

Jun Su Kim¹⁾, Hiroatsu Sato²⁾, and Kostas Papathanassiou¹⁾ 1) Microwaves and Radar Institute, DLR 2) Institute of Solar-Terrestrial Physics, DLR

