Performance limits of SAR Tomography for the characterization of of tropical forests measured in the BIOMASS configuration

L. Ferro-Famil^{1,2}, Y. Huang^{2,3}, P.A. Bou^{2,4}, S. Tebaldini⁵, L. Villard², T. Koleck², T. Le Toan²

¹ ISAE-SUPAERO, University of Toulouse, France
 ² CESBIO, University of Toulouse, France
 ³ IETR, University of Rennes, France
 ⁴ ONERA, France

⁵ DEIB, Politecnico di Milano, France

Context

 \approx

Context

Evaluation data set

- TropiSAR Campaign, 2009
- ONERA SETHI
- P-Band
- 6 tracks
- $\delta_{az} = 1.245m$ $\delta_{rg} = 1m$
- $\delta_z = 12.5m$
- Ground truth
 - LiDAR data
 - Biomass measurements for 16 ROIs

(a) Optical Image

(b) SAR Image

(c) Lidar DTM

(d) Lidar DSM

Simulation of BIOMASS data

Direct Model: Random Volume over Ground

- Vertical structure:

$$f(z) = f_g(z) + f_v(z)$$

- Independent scattering mechanisms:

$$I = \int f(z) \mathrm{d}z = I_g + I_v$$

- Interferometric coherence:

$$\gamma = \frac{\int f(z)e^{jk_z z} dz}{I} = L \gamma_v + (1 - L) \gamma_g, \qquad L = \frac{I_v}{I_v + I_g}$$

- Sensitivity to polarization

$$\gamma(\boldsymbol{\omega}) = L(\boldsymbol{\omega}) \, \gamma_v + (1 - L(\boldsymbol{\omega})) \, \gamma_g \longrightarrow \left[\mathbf{R}_{P-S} = \mathbf{C}_{\mathbf{g}} \otimes \mathbf{R}_{\mathbf{g}} + \mathbf{C}_{\mathbf{v}} \otimes \mathbf{R}_{\mathbf{v}} \right] \in \mathbb{C}^{3M \times 3M}$$

Airborne vs simulated BIOMASS coherence maps

Simulated BIOMASS data

$$\delta_{az} = 12.5 \, m \quad \delta_{rg} = 25 \, m$$

- Important loss of spatial resolution
- Range decorrelation

Model selection and validation

Model selection (see presentation by P.A. Bou)

Validation of radiometric representativity

Validation of geometric representativity (see presentation by Y. Huang)

Airborne estimation performance
$$\sigma_{\hat{z}_g} = 1.26\,m \quad \sigma_{\hat{h}_v} = 2.40\,m$$

BIOMASS estimation performance

$$\sigma_{\hat{z}_g} = 2.67 \, m \quad \sigma_{\hat{h}_v} = 3.76 \, m$$

Influence of model parameters on tomographic features

The influence of parameters cannot be well appreciated from tomograms

 \rightarrow a more quantitative approach is needed

Principle

- Does not require to invert the model!
- Assumes a well chose model: <u>null or compensated bias</u>
- May be used to assess the representativity of actually retrieved results

Investigated forest descriptors

- Model: ground + narrow volume + decorrelation

Descriptors d

$$z_g, h_v, w, L = \frac{I_v}{I_g + I_v}, SNR$$
Parameters
 $\{k_{z_m}\}_{m=1}^M, k_{z_m}\}$

 $AGB_{proxi} = f(P_{30m} = g(\mathbf{d}))$ - Advanced descriptors, e.g \rightarrow not presented today

$$\{k_{z_m}\}_{m=1}^M, k_{z_{crit}}$$

•eesa

Investigated forest descriptors

- Model: ground + narrow volume + decorrelation

${\tt Descriptors} \ d$

$$z_g, h_v, w, L = \frac{I_v}{I_g + I_v}, SNR$$

Parameters

$$\{k_{z_m}\}_{m=1}^M, k_{z_{crit}}$$

- Advanced descriptors, e.g
$$AGB_{proxi} = f(P_{30m}) = g(\mathbf{d})$$

 \rightarrow not presented today

Typical configuration (valid unless otherwise specified)

- descriptors

$$h_v = 30 \, m, w$$
 "small", $L = 0.5, SNR \approx 5 \, dB$

- baselines from TropiSAR data set

- horizontal terrain

- Forest height uncertainty larger than geound elevation's one
- Ground topography and tree height are more uncertain for small trees (vertical resolution limitation)
- Approx. 1m performance gap between Airborne and BIOMASS data

Minimal achievable uncertainty: sensitivity to GVR

- Best ground topography uncertainty for $L \rightarrow 0$
- Best tree height est. performance for $L \rightarrow \ 0.5$

Minimal achievable uncertainty: sensitivity to SNR

Minimal achievable uncertainty: application to real data

Ground topography

DTM uncertainty sensitivity to range slope well assessed by this method

Minimal achievable uncertainty: application to real data

Tree height

Minimal achievable uncertainty: application to real data

Synergistic use of priors

Synergistic use of priors

Inject Tomo DTM estimate prior

...to improve Dual Baseline Performance

19 19

Ground topography

Highly informative prior \rightarrow drastic reduction of uncertainty of the concerned parameter

Direct Model: Random Volume over Ground

Tree height

DTM prior \rightarrow moderate improvement of tree height uncertainty

Direct Model: Random Volume over Ground

DTM prior \rightarrow strong improvement of GVR uncertainty Important for ground and forest volume characterization

- Statistical tool for assessing the performance of Forest parameter estimation
- Supports multi-modes
- Account for priors and auxiliary information
- Permits to estimate the synergistic use of BIOMASS operation sequence
- Ongoing work ...