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Introduction

Ground range

Slant range
(zero-Doppler)

Δβ angular antenna aperture

Orbit – slant range 
plane 

Orbit

SAR platform

Swath

!𝑣! = platform velocity versor

#𝑘! = propagation versor at zero-Doppler geometry

Earth surface

Effects on SAR images:

� Attenuation 

� Range defocussing 

� Azimuth shift

� Faraday Rotation

Ionosphere
Upper part of Earth’s atmosphere 

characterized by ion and free-electron 

content.

𝑇𝐸𝐶 = %
%(ℓ)

𝑁) 𝐶 ℓ ; ℓ 𝑑ℓ Ω = 𝐶* %
%(ℓ)

𝑁) 𝐶 ℓ ; ℓ 𝐵 ⋅ -𝑘 𝑑ℓ

Electron density profile Magnetic field

Propagation vektor

Total Electron Content
Faraday rotation

All the effects of ionosphere on SAR 

images can be corrected using: from measurements of:

β squint angle

� The knowledge of the underlying electron density profile allow the correction of the ionospheric distorsions in SAR images.

�A thin-layer assumption can lead to 10-20% errors in the estimated TECU assuming a known ionosphere height.

� Faraday rotation can be estimated with centi-degree accuracy from polarimetric SAR data, and is the key 

to access electron density profiles !!!
2



Microwaves and Radar Institute > 30.05.2006
Microwaves and Radar Institute

Ionosphere tomography from SAR: Geometry

Azimuth – 𝑎
Ground

Range  – 𝑟
Measured from platform orbit

𝑁) 𝑎, 𝑟*

!𝑣! = platform velocity versor

#𝑘! = propagation versor
at zero-Doppler geometry

Platform orbit

Ω 𝑎; 𝛽 = 𝐶*%𝑁) 𝑎 + 𝑟 sin 𝛽 , 𝑟 𝐵 𝑎 + 𝑟 sin 𝛽 , 𝑟 ⋅ -𝑘 𝛽 𝑑𝑟

Objective: Reconstruction of the 
electron density distribution 
𝑁%(𝑎, 𝑟) from measurements of 
Faraday rotation in multiple sub-
apertures.

The associated multiple squint 
angles provide the required viewing 
diversity. 

-𝑘 𝛽 = cos 𝛽 -𝑘* + sin 𝛽 9𝑣*

Δβ antenna aperture

Faraday rotation at an azimuth 𝑎 and for an angle 𝛽:  

𝐵 𝑎 + 𝑟 sin 𝛽 , 𝑟 ⋅ -𝑘 𝛽 = 𝐵+ 𝑎 + 𝑟 sin 𝛽 , 𝑟 cos 𝛽 + 𝐵, 𝑎 + 𝑟 sin 𝛽 , 𝑟 sin 𝛽

Orbit – slant range 
plane 

In the orbit-range plane:  

from which:  

β

Elevation (or height):
(𝑅 − 𝑟) ⋅ cos 𝜃
Measured from ground

The challenge: Δβ is very 
small (e.g. 1.5° for ALOS) for 
current configurations
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Role of the Earth magnetic field

Ω 𝑎; 𝛽 = 𝐶*%𝑁) 𝑎 + 𝑟 sin 𝛽 , 𝑟 𝐵+ 𝑎 + 𝑟 sin 𝛽 , 𝑟 cos 𝛽 + 𝐵, 𝑎 + 𝑟 sin 𝛽 , 𝑟 sin 𝛽 𝑑𝑟

The orientation of the magnetic field affects directly the sensitivity of the Faraday rotation as a function of 𝛽 (sub-apertures) to profile changes   

For small 𝛽: 

Ω 𝑎; 𝛽 ≈ 𝐶*%𝑁) 𝑎 + 𝑟 sin 𝛽 , 𝑟 𝐵+ 𝑎 + 𝑟 sin 𝛽 , 𝑟 𝑑𝑟 + 𝛽 𝐶*%𝑁) 𝑎 + 𝑟 sin 𝛽 , 𝑟 𝐵, 𝑎 + 𝑟 sin 𝛽 , 𝑟 𝑑𝑟

Dipolar representation of the geomagnetic field
Image credit: DOI: 10.1007/s12045-020-0951-9

Parallel to zero-Doppler range Parallel to platform movement 

Intensity of the radial component of the 
geomagnetic field

Image credit: 
http://www.geomag.bgs.ac.uk/education/earthmag.html

Intensity of the horizontal component of 
the geomagnetic field

Image credit: 
http://www.geomag.bgs.ac.uk/education/earthmag.html

Minimizing 𝐵+ / maximizing 𝐵, is critical to allow ionospheric reconstructions !!! For a polar-orbiting SAR:

� Moving towards high latitudes (e.g. boreal zones): the geomagnetic field becomes more and more radial � 𝐵+ becomes significant

� Moving towards the equator: the horizontal component of the geomagnetic field dominates � 𝐵+ is very small (tending to 0)
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Boreal latitudes 

ALOS ‘Fairbanks’ geometry

Equatorial latitudes

ALOS-2 ‘Malaysia’ geometry

𝑩𝑲

𝑩𝑽

Considered 
locations

𝑩𝑲 ( // zero-Doppler range)

𝑩𝑽 ( // platform movement)
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Intensity of the horizontal component of 
the geomagnetic field

Image credit: 
http://www.geomag.bgs.ac.uk/education/earthmag.html
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Sensitivity of Faraday rotation to profile parameters

Chapman layer

H
Pe
ak

HTop

Reference case:
HPeak = 200 km
HTop = 50 km
TEC = TEC0

Plots:
Difference between 
Ω(β) for the different 
profiles and Ω(β) in the 
reference case after 
compensating mean 
values
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Equatorial latitudes – ALOS-2 ‘Malaysia’ geometry Boreal latitudes – ALOS ‘Fairbanks’ geometry 
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Ionosphere tomography: Inversion geometry

Azimuth – 𝑎

Range  – 𝑟

𝑁) 𝑎, 𝑟*

Platform orbit

Δβ

Ground

Δβ

Δβ

Ω 𝑎 − 𝑟 sin 𝛽 , 𝛽 = 𝐶*%𝑁) 𝑎, 𝑟 𝐵+ 𝑎, 𝑟 cos 𝛽 + 𝐵, 𝑎, 𝑟 sin 𝛽 𝑑𝑟

� Higher elevations (low ranges) rely on larger azimuth intervals;
� At lower elevations (high ranges), the usable azimuth intervals become narrower and the inversion relies more on 
the variability of the magnetic field across the sub-aperture: equatorial latitudes are favored, while for boreal ones the 
availability of a larger aperture becomes critical.

Ω
𝑎
+
𝑟 s
in
Δ𝛽 2
, 𝛽
=
Δ𝛽 2

Ω
𝑎
+
𝑟 sin Δ𝛽2

, 𝛽
=
− Δ𝛽2

2(𝑅 − 𝑟) sin
Δ𝛽
2
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Ionosphere tomography: Implementation 

Azimuth – 𝑎

R
an

ge
  –

𝑟

Platform orbit

Ground

NR

NA

S sub-apertures (β1, …, βS)

� The orbit-range plane is discretized into NR × NA cells.
� The original Faraday rotation integral becomes a sum and is calculated for S sub-apertures.
� The process is repeated for L azimuth locations. Working assumption: L = NA

Ω 𝑎ℓ; 𝛽/ = 𝐶* B
012

3!

𝑑/,0𝑁) 𝑎0
(ℓ,/), 𝑟0

(ℓ,/) 𝐵 𝑎0
(ℓ,/), 𝑟0

(ℓ,/) ⋅ -𝑘 𝛽/

The original Faraday rotation integral becomes in the 
generic s-th sub-aperture for the ℓ-th azimuth location:  

𝑎"
(ℓ,&), 𝑟"

(ℓ,&) coordinates of the 𝑀& grid cells intercepted by the 
s-th propagation path (depend on 𝑎ℓ and 𝛽&)

𝑑&," length of the s-th propagation path within the m-th
intercepted path

𝑎ℓ
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Ionosphere tomography: Implementation 

Ω 𝑎2; 𝛽2 = 𝐶* B
012

3"

𝑑2,0𝑁) 𝑎0
(2,2), 𝑟0

(2,2) 𝐵 𝑎0
(2,2), 𝑟0

(2,2) ⋅ -𝑘 𝛽2

Ω 𝑎2; 𝛽5 = 𝐶* B
012

3#

𝑑5,0𝑁) 𝑎0
(2,5), 𝑟0

(2,5) 𝐵 𝑎0
(2,5), 𝑟0

(2,5) ⋅ -𝑘 𝛽5

Ω 𝑎6; 𝛽2 = 𝐶* B
012

3"

𝑑2,0𝑁) 𝑎0
(6,2), 𝑟0

(6,2) 𝐵 𝑎0
(6,2), 𝑟0

(6,2) ⋅ -𝑘 𝛽2

Ω 𝑎6; 𝛽5 = 𝐶* B
012

3#

𝑑5,0𝑁) 𝑎0
(6,5), 𝑟0

(6,5) 𝐵 𝑎0
(6,5), 𝑟0

(6,5) ⋅ -𝑘 𝛽5

…
…

…

Sub-apertures at the 
azimuth location 1

Sub-apertures at the 
azimuth location L

𝛀 = 𝐀 𝐧
Linear system of equations:

NS × L

𝐧 = (𝐀!𝐀)"#𝐀!𝛀

𝐧 = (𝐀!𝐀 + 𝛿 𝐈)"#𝐀!𝛀

Least-squares solution:

With regularization:

NR × NA
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Examples of inverted profiles
Boreal latitudes – ALOS ‘Fairbanks’ geometry 

HPeak = 200 km
HTop = 50 km
TEC = TEC0

HPeak = 300 km
HTop = 50 km
TEC = TEC0

HPeak = 300 km
HTop = 150 km
TEC = TEC0

HPeak = 300 km
HTop =     50 km
TEC = 2TEC0

The smallest tested aperture (9 km = 0.75° L-band, 4.5 m az. res.) does not allow an inversion below a 300 km.
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Examples of inverted profiles
Equatorial latitudes – ALOS-2 ‘Malaysia’ geometry

The variability of the magnetic field across sub-apertures allows the inversion below 300 km also for the smallest 
aperture, but a larger one allow better reconstructions.

HPeak = 200 km
HTop = 50 km
TEC = TEC0

HPeak = 300 km
HTop = 50 km
TEC = TEC0

HPeak = 300 km
HTop = 150 km
TEC = TEC0

HPeak = 300 km
HTop = 150 km
TEC = 2TEC0
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Fairbanks (Alaska) – ALOS

31.03.2007 - Resolution: 12.5 m × 4.48 m (sl. range × azimuth)

First real data results
Malaysia – ALOS-2

04.08.2015 - Resolution: 12.5 m × 4.48 m (sl. range × azimuth)

Faraday rotations estimated by means of Bickel & Bates

Multilook 2 km × 2 km (sl. range × azimuth)
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First real data results

Faraday rotations estimated by means of Bickel & Bates

Multilook 2 km × 2 km (sl. range × azimuth)

Faraday rotations estimated by means of Bickel & Bates in 20 sub-apertures

Multilook 2 km × 2 km (sl. range × azimuth)
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First real data results

Reconstructed tomographic profiles

(equation system inversion with regularization)

Faraday rotations estimated by means of Bickel & Bates in 20 sub-apertures

Multilook 2 km × 2 km (sl. range × azimuth)
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First real data results
Faraday rotations estimated by means of Bickel & Bates in 20 sub-apertures

Multilook 2 km × 2 km (sl. range × azimuth)

Reconstructed tomographic profiles

(equation system inversion with regularization and elevation constraints)
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� An approach for the reconstruction of electron density profiles using measurements of Faraday 

rotation from multiple sub-apertures of polarimetric SAR acquisitions has been considered.

� Two critical performance factors:

� The relative orientation between the geomagnetic field and the line of sight. Equatorial l

atitudes maximise the variation of the magnetic field within the synthetic aperture, hence the 

sensitivity to the profile features.

� The (typically small) available aperture. Larger apertures affect not only the resolution of the 

reconstruction, but also allow a more accurate reconstruction at lower elevations.

� Inversions results show interesting potentials: position and width of ionosphere layers can be 

reconstructed, but the retrieved electron density is biased. But positional features are still important

information supporting ionosphere observation and effect correction.

Conclusions
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