

Polarimetric SAR for the Reconstruction of the Ionospheric Electron Density Profile: Observation Requirements

S. De Palma, M. Pardini, J-S. Kim, F. Lobardini and K. Papathanassiou German Aerospace Center (DLR), Microwaves and Radar Institute (DLR-HR) University of Pisa

- ► The knowledge of the underlying electron density profile allow the correction of the ionospheric distorsions in SAR images.
- ► A thin-layer assumption can lead to 10-20% errors in the estimated TECU assuming a known ionosphere height.

► Faraday rotation can be estimated with centi-degree accuracy from polarimetric SAR data, and is the key to access electron density profiles !!!

Ionosphere tomography from SAR: Geometry

Role of the Earth magnetic field

The orientation of the magnetic field affects directly the sensitivity of the Faraday rotation as a function of β (sub-apertures) to profile changes

$$\Omega(a;\beta) = C_0 \int N_e(a+r\sin\beta,r) [B_K(a+r\sin\beta,r)\cos\beta + B_V(a+r\sin\beta,r)\sin\beta] dr$$

For small β :
$$\Omega(a;\beta) \approx C_0 \int N_e(a+r\sin\beta,r) B_K(a+r\sin\beta,r) dr + \beta C_0 \int N_e(a+r\sin\beta,r) B_V(a+r\sin\beta,r) dr$$

Minimizing B_K / maximizing B_V is critical to allow ionospheric reconstructions !!! For a polar-orbiting SAR:

- Moving towards high latitudes (e.g. boreal zones): the geomagnetic field becomes more and more radial \triangleright B_K becomes significant
- Moving towards the equator: the horizontal component of the geomagnetic field dominates \triangleright B_K is very small (tending to 0)

Sensitivity of Faraday rotation to profile parameters

Ionosphere tomography: Inversion geometry

► Higher elevations (low ranges) rely on larger azimuth intervals;

► At lower elevations (high ranges), the usable azimuth intervals become narrower and the inversion relies more on the variability of the magnetic field across the sub-aperture: equatorial latitudes are favored, while for boreal ones the availability of a larger aperture becomes critical.

Ionosphere tomography: Implementation

- ▶ The orbit-range plane is discretized into $N_R \times N_A$ cells.
- ► The original Faraday rotation integral becomes a sum and is calculated for S sub-apertures.
- ► The process is repeated for L azimuth locations. Working assumption: L = N_A

Ionosphere tomography: Implementation

Examples of inverted profiles

Boreal latitudes – ALOS 'Fairbanks' geometry

The smallest tested aperture (9 km = 0.75° L-band, 4.5 m az. res.) does not allow an inversion below a 300 km.

Examples of inverted profiles

Equatorial latitudes – ALOS-2 'Malaysia' geometry

The variability of the magnetic field across sub-apertures allows the inversion below 300 km also for the smallest aperture, but a larger one allow better reconstructions.

Fairbanks (Alaska) – ALOS

31.03.2007 - Resolution: 12.5 m × 4.48 m (sl. range × azimuth)

Malaysia – ALOS-2

Faraday rotations estimated by means of Bickel & Bates

Multilook 2 km × 2 km (sl. range × azimuth)

Faraday rotations estimated by means of Bickel & Bates in 20 sub-apertures

Multilook 2 km × 2 km (sl. range × azimuth)

Faraday rotations estimated by means of Bickel & Bates

Faraday rotations estimated by means of Bickel & Bates in 20 sub-apertures

Multilook 2 km × 2 km (sl. range × azimuth)

Reconstructed tomographic profiles

Faraday rotations estimated by means of Bickel & Bates in 20 sub-apertures

Multilook 2 km × 2 km (sl. range × azimuth)

Reconstructed tomographic profiles

(equation system inversion with regularization and elevation constraints)

Conclusions

► An approach for the reconstruction of electron density profiles using measurements of Faraday rotation from multiple sub-apertures of polarimetric SAR acquisitions has been considered.

- ► Two critical performance factors:
 - ► The relative orientation between the geomagnetic field and the line of sight. Equatorial I atitudes maximise the variation of the magnetic field within the synthetic aperture, hence the sensitivity to the profile features.
 - ► The (typically small) available aperture. Larger apertures affect not only the resolution of the reconstruction, but also allow a more accurate reconstruction at lower elevations.

► Inversions results show interesting potentials: position and width of ionosphere layers can be reconstructed, but the retrieved electron density is biased. But positional features are still important information supporting ionosphere observation and effect correction.

Polarimetric SAR for the Reconstruction of the Ionospheric Electron Density Profile: Observation Requirements

S. De Palma, M. Pardini, J-S. Kim, F. Lobardini and K. Papathanassiou German Aerospace Center (DLR), Microwaves and Radar Institute (DLR-HR) University of Pisa

