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Introduction

• A Surface Topography and Vegetation (STV) mission 
was recommended in “Thriving on Our Changing 
Planet: A Decadal Strategy for Earth Observations 
from Space,” released by the National Academies of 
Sciences, Engineering, and Medicine in 2018.

• Multi-sensor and multi-platform approaches were 
highlighted as no single sensor can meet accuracy, 
resolution, and coverage goals.

• We are exploring data fusion of SAR and lidar data to 
estimate forest canopy height and vertical structure.

• Mangrove forests are vitally important coastal 
ecosystems. Despite their small coverage area, they 
are extremely productive, carbon rich ecosystems 
which are inherently vulnerable to sea level rise as 
well as human activities. 

• Mangroves also have a distinct structure (e.g., above-
ground root systems) and would not necessarily 
conform to the same model used for other forest 
types.
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Figure from STV concept 
from Surface Topography 
and Vegetation Incubation 
Study Team White Paper.
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Data Overview & Study Area

• Using UAVSAR 
(https://uavsar.jpl.nasa.gov/) and 
Land, Vegetation, and Ice Sensor 
lidar (LVIS; 
https://lvis.gsfc.nasa.gov) data 
collected during the 2016 AfriSAR
campaign.

– Fatoyinbo, T., et al. The NASA AfriSAR campaign: 
Airborne SAR and lidar measurements of tropical 
forest structure and biomass in support of current 
and future space missions. Remote Sens. Environ., 
264 (2021), Article 112533

• Mangrove extent from Global 
Mangrove Watch data.

– Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, 
R.M.; Thomas, T.; Tadono, T.; Worthington, T.A.; 
Spalding, M.; Murray, N.J.; Rebelo, L-M. Global 
Mangrove Extent Change 1996 – 2020: Global 
Mangrove Watch Version 3.0. Remote Sensing. 
2022
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Summary of Network Configuration

• Used deep neural networks consisting of an 
input layer (given UAVSAR PolInSAR features 
as input), multiple hidden layers, and then an 
output layer (trained to estimate canopy 
height, or both canopy height and canopy 
height uncertainty).

• The results in these slides use four hidden 
layers with sizes (10, 10, 10, 5).

• Tested larger networks but with negligible 
improvement in performance.

• Different network configurations to 
accommodate different numbers of baselines:

– Single-Baseline Network (only features from one 
baseline given; however, baselines can be 
merged using uncertainty estimated by network)

– Triple-Baseline Network (three baselines given 
as input, each with kz information so network 
can differentiate short and long baselines)
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PolInSAR Features Used as Input to Network

• Backscatter (HH, HV, VV in linear units, 3 total features).
• Interferometric Covariance Matrix (for each baseline, 3 complex values 

split into real and imaginary components, 6 total features).
• kz (for each baseline)
• High and Low Coherence Magnitude (for each baseline)
• High and Low Coherence Phase Center Height Above Estimated 

Ground (for each baseline)
• Coherence Separation (for each baseline)

– abs(high - low)
– abs(high - ground)

• All input features are scaled (mean subtracted, then divided by standard deviation, 
based on training data) before training and prediction.
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Summary of Network Training

• Trained on 0.1% of the LVIS data, randomly chosen from each scene.
• Remaining LVIS data used for testing.
• Two networks, one trained on only mangrove samples within Pongara and 

Mondah scenes (selected using Global Mangrove Watch extents).
• Another generalized network trained on both mangrove and non-mangrove 

pixels within five UAVSAR scenes where we have coincident LVIS data.
– Pongara, Mondah, Lope, Rabi (AfriSAR Scenes).
– Boreal Ecosystem Research and Monitoring Sites (BERMS) in Saskatchewan, Canada.

• One set of networks configured to have one output, trained using square error 
between output and LVIS RH98 as loss function.

• Another set of networks were designed to provide two outputs: an estimate and an 
uncertainty.  In this case, the loss function was the mean square error weighted by the 
uncertainty (w = 1 / σ2) provided by the network.  To avoid the network choosing high 
uncertainty for all samples, the loss function is regularized by the mean σ2.
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Trained on Mangroves Only, Tested on Mangroves Only
Single Baseline Network

8
Best baseline shown for each scene.
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Trained on Mangroves Only, Tested on Mangroves Only
Single Baseline Network with Uncertainty Output

9

Best baseline shown for each pixel 
(based on network’s uncertainty output).
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General Model Trained on a Variety of Forest Types, Tested on Mangroves Only
Single Baseline Network

10
Best baseline shown for each scene.
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General Model Trained on a Variety of Forest Types, Tested on Mangroves Only
Single Baseline Network with Uncertainty Output
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Best baseline shown for each pixel 
(based on network’s uncertainty output).
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Trained on Mangroves Only, Tested on Mangroves Only
Triple Baseline Network
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Best baseline triple shown for 
each scene.
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Trained on Mangroves Only, Tested on Mangroves Only
Triple Baseline Network with Uncertainty Output
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Best baseline triple shown for each pixel 
(based on network’s uncertainty output).
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General Model Trained on a Variety of Forest Types, Tested on Mangroves Only
Triple Baseline Network
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Best baseline triple shown for 
each scene.
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General Model Trained on a Variety of Forest Types, Tested on Mangroves Only
Triple Baseline Network with Uncertainty Output
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Best baseline triple shown for each pixel 
(based on network’s uncertainty output).
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Are the uncertainty estimates correlated to the actual errors?
Triple Baseline Network with Uncertainty Output
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Minimum σh shown for each pixel.
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Do the trained networks out-perform the interpolated training data?
Results Compared to Interpolated Training Data
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Conclusions & Future Work

• Testing data fusion approaches using deep neural networks trained on lidar canopy 
height data with PolInSAR input features.

– Networks which use multiple baselines as input produce smaller errors than single-baseline data.
– Networks trained on mangrove data alone can outperform a generalized network.  Other species-specific 

networks could be developed.
– Networks can be trained to estimate uncertainty.  This can improve estimation of canopy heights from 

multiple baselines or sets of baselines by allowing different estimates to be combined based on their 
uncertainty.  This had a more significant improvement for the generalized network than the mangrove-
specific network.  Adding uncertainty estimation to a network does not make it a better estimator but can 
make the network more robust to a wider variety of inputs.

• In the future, we will expand the training datasets to include data from the forthcoming 
2023 AfriSAR-2 campaign and other data collections, and to compare L-band and P-
band data.

• Explore fusion of PolInSAR/TomoSAR with lidar data using convolutional neural 
networks which account for spatial structure.  Explore fusion of TomoSAR profiles with 
lidar waveform data.

• Contact: michael.w.denbina@jpl.nasa.gov.
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Open Postdoc Positions at JPL

1. Lidar and PolinSAR/TomoSAR Data Fusion in Monitoring Changes of 
Vegetation Structure and Surface Topography

– https://www.jpl.jobs/job/R2894
– Contact: Sassan Saatchi (sasan.s.saatchi@jpl.nasa.gov)

2. Radar Remote Sensing of Vegetation
– https://www.zintellect.com/Opportunity/Details/0048-NPP-JUL23-JPL-

EarthSci?contractdesignation=2
– Contact: Marc Simard (marc.simard@jpl.nasa.gov)

3. Hydrologist Specializing in Coastal Regions with Remote Sensing Expertise
– https://www.jpl.jobs/job/R4250
– Contact: Marc Simard (marc.simard@jpl.nasa.gov)

You can also contact me, I’m happy to answer questions or point you in the 
right direction: michael.w.denbina@jpl.nasa.gov
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