

SAR4Change: Deforestation Detection Using Dualpolarimetric SAR Information

Unmesh Khati¹, Anam Sabir¹, Marco Lavalle²

¹Indian Institute of Technology Indore, India ²NASA-Jet Propulsion Laboratory, California Institute of Technology, USA

Motivation

- Deforestation detection using SAR time-series is important
- Focus on Sentinel-1 and NISAR missions, we aim to study the impact of
 - Frequency
 - Polarization
 - \circ Resolution
 - Forest eco-regions

Deforestation Sites

Haldwani, India

Kalimantan, Indonesia

Data Used

	 C-band Sentinel-1, Dual-pol, SLC Timeline: 2016-2020 Number of acquisitions Haldwani: 71 Kalimantan: 134 				 L-band ALOS-2, Dual-pol, Stripmap SLC Timeline: 2016-2020 Number of acquisitions Haldwani: 23 Kalimantan: 28 						
					Kalim	nantan					
		2	016	2017	20)18		2019		2020	
			14	29	2	29		28		24	
Haldwani											
			2016		2017 20		2018	2019			
			8		27		26		10		

Processing Workflow

Change detection algorithms

Validation Plots

Kalimantan

Minimum Area: 4 ha Maximum Area: 79 ha

Haldwani

Minimum Area: 1 ha Maximum Area: 220 ha

• **Overall Accuracy**: Proportion of correctly classified instances over the total number of instances.

Overall Accuracy = (TP + TN) / (TP + TN + FP + FN)

• User's accuracy: Proportion of correctly classified positive instances out of all actual positive instances.

User's Accuracy = TP / (TP + FN)

• **Producer's Accuracy (Precision)**: Proportion of correctly classified positive instances out of all predicted positive instances.

Producer's Accuracy = TP / (TP + FP)

• F1 Score: Harmonic mean of precision and recall, providing a single metric that balances both metrics.

F1 Score = 2 * (Producer's Accuracy * User's Accuracy) / (Producer's Accuracy + User's Accuracy)

• Kappa Coefficient: Agreement between the predicted and actual labels, adjusted for the agreement occurring by chance.

Kappa = (Overall Accuracy - Expected Accuracy) / (1 - Expected Accuracy)

💻 📰 📕 🚍 💻 🕂 💵 🔚 📰 📰 🚺 🚺 🚍 🏪 🚍 🛶 🔯 🖿 📲 🚼 🛨 📰 📾 🔤 🔤 🚺 🔸 The European space agency

Change Maps

Cumulative Sums of Change Kalimantan

25m

Kalimantan L-band: HH

250 500 750 1000 1250 1500 1750

→ THE EUROPEAN SPACE AGENCY

400

300

300

Change Maps

Cumulative Sums of Change Haldwani

250

0 50

100

150 200 250

25m

600 800 1000

0 200 400

Haldwani C-band: VH

Haldwani L-band: HV

Observations

At 25m resolution, Cumulative Sums of Change

Observations

At 100m resolution, Cumulative Sums of Change

Accuracy Parameters

Overall Accuracy

Kalimantan				Haldwani			
		25m	100m			25m	100m
Sontinol 1	Co-pol	0.737	0.802	Sentinel-1	Co-pol	0.745	0.782
Sentinei-1	Cross-pol	0.783	0.915		Cross-pol	0.608	0.770
	Co-pol	0.796	0.919	ALOS-2	Co-pol	0.625	0.577
AL03-2	Cross-pol	0.635	0.915		Cross-pol	0.563	0.585

Accuracy Parameters

Kappa

Kalimantan				Haldwani			
		25m	100m			25m	100m
Sontinol 1	Co-pol	0.474	0.614	Sentinel-1	Co-pol	0.745	0.559
Sentinei-1	Cross-pol	0.561	0.828		Cross-pol	0.608	0.533
	Co-pol	0.602	0.837	ALOS-2	Co-pol	0.144	0.122
ALOS-2	Cross-pol	0.258	0.830		Cross-pol	0.093	0.161

📲 🚍 💻 🕂 🛐 🔚 🔚 📰 📲 🔚 🔚 🔤 📲 🔤 🔤 🚱 🖕 📲 🚼 📰 📟 🔤 🔤 🙀 🔸 The European space Agency

Compensating for seasonality

Kalimantan C-band: VV Without Seasonal Compensation

Kalimantan C-band: VH Without Seasonal Compensation

Kalimantan C-band: VV With Seasonal Compensation

→ THE EUROPEAN SPACE AGENCY

· e e sa

Effect of logged area size

Kalimantan

Two subsets chosen with different sizes of logged area:

Small logging areas: 4 ha to 20 ha

Large logging areas: 52 ha to 796 ha

Effect of logged area size

Haldwani

Two subsets chosen with different sizes of logged area

Small logging areas: 1 ha to 20 ha

Large logging areas: 30 ha to 90 ha

Take Away Message

- Forest- and management-type affects the detection of deforestation/logging
 - Logged area size
 - Frequency of logging activity
- Smaller logged regions are not captured (Haldwani)
- Impact of logged area much higher in case of L-band than at C-band
- Both polarizations perform equally in case of Kalimantan
- Cross-pol backscatter performs better in managed forests

💳 💶 📲 🚍 💳 🕂 🚺 🚟 🚍 🚺 🗊 🚍 🏪 🧫 🖬 🕼 🖬 🗮 🗮 ன 🖬

2023 IEEE India Geoscience and Remote Sensing Symposium

Hosted at the International Institute of Information Technology, Bangalore (IIITB)

10 – 13 December 2023, Bengaluru Abstract Submission Deadline: 15th August 2023

https://ingarss.org/

SAR4Change: Deforestation Detection Using Dualpolarimetric SAR Information

Unmesh Khati¹, Anam Sabir¹, Marco Lavalle²

¹Indian Institute of Technology Indore, India ²NASA-Jet Propulsion Laboratory, California Institute of Technology, USA

Change Maps

Sequential Omnibus

300

Observations

Sequential Omnibus

