

Biomass In-Orbit Calibration And Performance Verification Overview

A. Leanza (ESA-ESTEC) P. Willemsen (ESA-ESTEC) M. Fehringer (ESA-ESTEC) A. Carbone (ESA-ESTEC) T. Simon (ESA-ESTEC) B. Rommen (ESA-ESTEC) M. Malik (ESA-ESTEC) K. Scipal (ESA-ESRIN) S. Rama (ESA-ESTEC)

ESA UNCLASSIFIED - For ESA Official Use Only

Presentation Outline

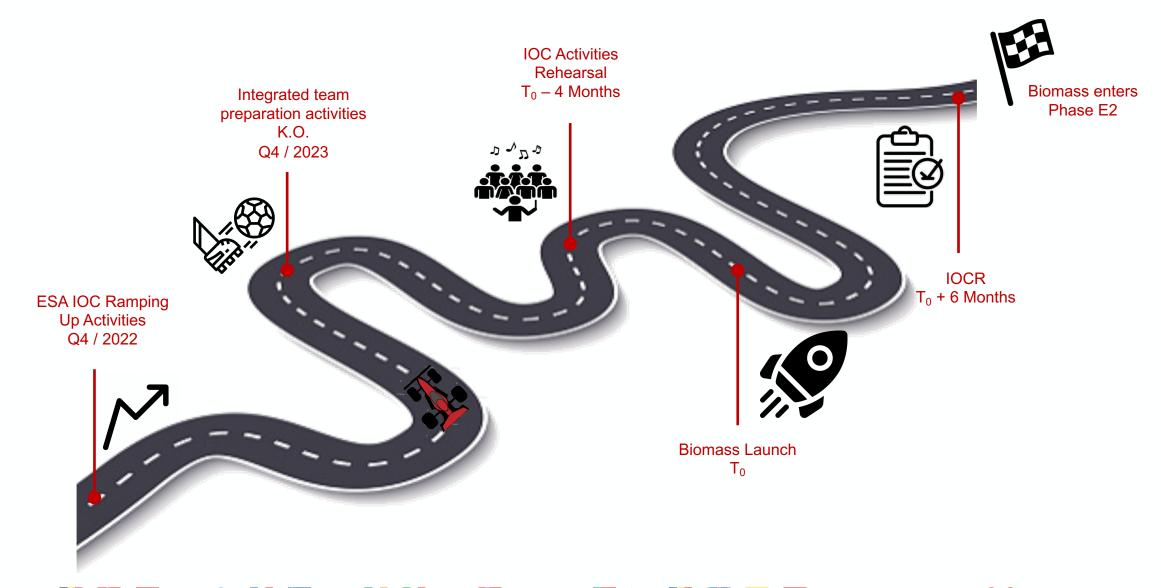
- Biomass IOC scope
- The Road to Phase E2
- IOC Baseline Plan
- The Biomass Polarimetric Active Radar Calibrator (PARC)
- PARC Operational Modes
- PARC Deployment
- Identification of ToO for Biomass IOC / Phase E2
- Summary
- Acknowledgements

Biomass IOC scope

Usual IOC Cal/Val activities:

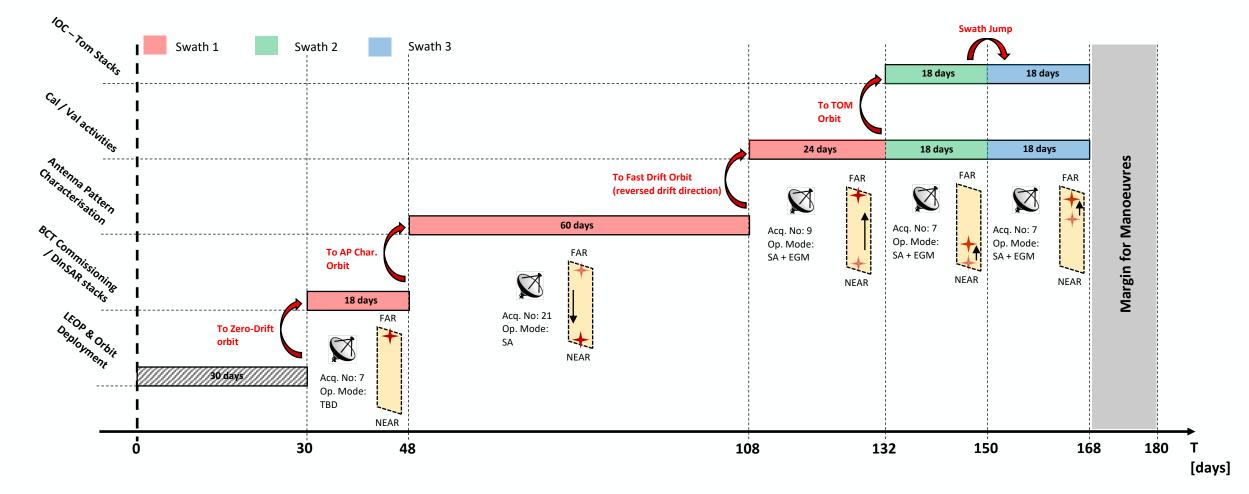
- Performance requirement verification
- Calibration (Absolute Cal. Factor, Pointing,)

Biomass Peculiar activities:


- In-flight Antenna Patterns Characterization
- Polarimetric Verification / Calibration

Parameter	Value
Channel Imbalance	\leq -25 dB, Tx and Rx combined
Cross-Talk	≤ -30 dB
Radiometric bias	≤ 0.3 dB
Radiometric stability	≤ 0.5 dB
Noise Equivalent Sigma Nought	≤ -27 dB
Total Ambiguity Ratio	≤ -18 dB
Spatial resolution, cross-track and along track	60 m x 50 m
Residual phase error, standard deviation	≤ 10 deg, over pulse travel and data take time (12 min)
Peak to Sidelobe Ratio	≤ -16 dB
Integrated Sidelobe Ratio	≤ -9 dB
Geo-location accuracy	Better than 25 m
Dynamic range	-30dB to 5 dB

→ THE EUROPEAN SPACE AGENCY


The road to Phase E2

IOC Baseline Plan

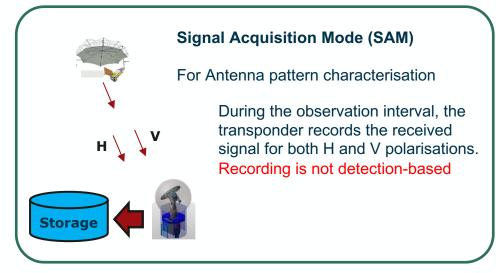

5

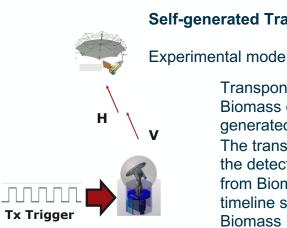
Polarimetric Active Radar Calibrator (PARC)

- first of its kind active, fully polarimetric P-band transponder, four independent polarimetric signature matrices
- satellite tracking in Azimuth/Elevation: ensure consistent measurements with maximum transponder antenna gain
- control & microwave sub-system including microwave sub-system, digital sub-system
- transponder calibration sub-system, supporting the transponder external calibration

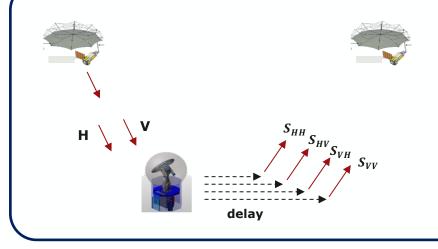
Feature Description		
Antenna design	2D array with a 4.8 diameter. 4 quarter composed by 13 patches each (10 active)	
Antenna Beam	12 deg HPBW. Gain 22.7 dBi	
Simulated RCS	85 dB(m ²) with an uncertainty < 0.2 dB (1 σ)	
Gain stability	< 0.1 dB (1 σ) over the entire mission lifetime	
Sensitivity	Capability to detect PFD > -90 dBm/m ²	
Cross-Polar isolation	< 40 dB (1-way) in both Tx and Rx	
Channel Imbalance	< 0.1 dB (1 σ) in amplitude and < 0.77 deg (1 σ) in phase, including the antenna (2-way)	
Signal to Multipath Ratio	> 43.5 dB	
Steering	Azimuth and Elevation. Biomass tracked during the overpass	
Absolute pointing error	< 0.5 deg (3 σ) azimuth and elevation combined	
Calibration	Internal calibration network (I-CAL) + External calibration disk with a known RCS (Ex-CAL)	
Operational Modes	3 operational modes that can be run in any combination (details in the next slide)	

Courtesy of C-CORE


6


📕 🚍 💳 🕂 📲 🔚 📕 🔚 🔚 🚍 📲 💳 🛶 🚳 🦕 📲 🚼 📰 📾 🖓 📩 🖬 🛃 👘 🖓

PARC Operational Modes


Three mutually inclusive modes:

Self-generated Transmit Mode (STM)

Transponder transmits toward Biomass delayed H and V pulses generated by the transponder itself. The transmission can be triggered by the detection of a pulse received from Biomass or according to a timeline synchronized with the Biomass Rx window (beacon mode)

Echo Generation Mode (EGM)

For system calibration: radiometry, polarimetry, geometry

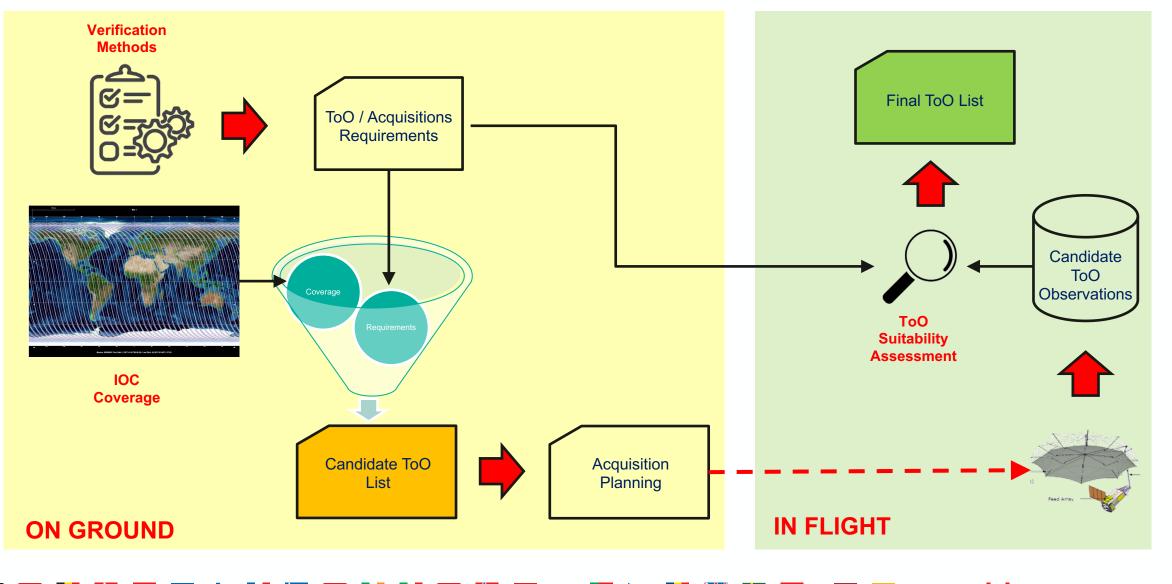
The detection of a received pulse, triggers the re-transmission of four delayed pulses, each one associated with a polarimetric signature and properly amplified to simulate a given RCS.

$$S_{HH} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}; \quad S_{HV} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}; \quad S_{VH} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}; \quad S_{VV} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

→ THE EUROPEAN SPACE AGENCY

PARC deployment

Courtesy of Airbus UK and C-CORE



→ THE EUROPEAN SPACE AGENCY

8

Identification of ToO for Biomass IOC / Phase E2

→ THE EUROPEAN SPACE AGENCY

9

· e e sa

- Biomass Mission characteristics require an extensive and complex In-Orbit Commissioning. For this reason, ESA ramped-up the related activities well in advance.
- IOC activities will be covered by an integrated expert team that will analyze the collected data from a fully Polarimetric Active Radar and a selected set of Target of Opportunity.
- These Target of Opportunity will be identified according a two step selection process. The first is currently ongoing and is based on analysis. The second one will be evidence-based and will exploit the acquisitions performed in the early phase of the IOC
- The core of the IOC activities will be based on PARC acquisitions. The Biomass PARC has been designed for the system peculiarities. Its deployment on-site is pretty advanced and well in schedule.
- Last but not least, Biomass IOC will be also based on a set of orbit manoeuvres to provide the required acquisition geometries (particularly for transponder overpasses)

e

10

Thank you for all participants to, and supporters of, the Biomass Mission who are contributing significantly to the realization of this challenging mission, including:

- Members of the ESA core development team, MAG, the ESA Ground Segment: FOS and PDGS teams, the technical support teams in ESA and the DLR Microwaves and Radar Institute
- The Biomass industrial consortium, Airbus Defence and Space Ltd (UK), Airbus Defence and Space GmbH (Germany), C-Core (Canada) and their subcontractors and suppliers

💳 💶 📲 🚍 💳 🕂 📲 🧮 🔚 📲 🔚 📲 🚟 📥 🚳 🖕 📲 🚼 📰 📾 🐏 ன 🍁 🔸 The European space Agency