

BIOMASS: Mission Planning and Operations Concept

T. Simon¹, **S. Brás**⁴, P. Willemsen¹, A. Leanza⁵, A. Carbone¹, B. Rommen¹, M. Fehringer¹, M. Maktar¹, K. Scipal², C. Lopes², E. Maestroni

¹ ESA/ESTEC, ² ESA/ESRIN, ³ ESA/ESOC, ⁴ HE Space Operations, ⁵ Serco 20/06/2023

11th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry and BIOMASS Workshop ESA UNCLASSIFIED – Releasable to the Public

→ THE EUROPEAN SPACE AGENCY

Introduction

Instrument: P-Band synthetic aperture radar

Reflector: 12 m

Mass: 1250 kg

Orbit :

- Sun-synchronous, dawn-dusk
- Orbit height: 666 km
- (Near) repeat cycle: 44
- (Near) cycle length: 3

Observation geometry (1 day coverage)

Observation geometry (3 day coverage)

Observation geometry (repeat cycle orbit)

A spacecraft in an orbit with a pure 3 days / 44 orbit, observes exactly same observation every 3 days.

Observation geometry (near repeat cycle orbit)

Biomass will be operated at a slightly higher altitude.

South Pole

This means that the spacecraft will take slightly longer than 3 days to perform the 44 orbits, and the Earth will have time to rotate slight more eastwards.

This longitude drift is leveraged to generate the necessary baselines.

3 days / 44

orbits

Biomass

orbit

Observation geometry (swath 1)

➡ THE EUROPEAN SPACE AGENCY

Observation geometry (swath 1 & swath 2)

Observation geometry (swath 1 & swath 2 & swath 3)

Observation geometry (swath 1 & swath 2 & swath 3)

→ THE EUROPEAN SPACE AGENCY

Satellite repositioning manoeuvre

But there is a limit the incidence angle of the observations. Thus, at the end of the observations with the 3 swaths, Biomass raises its orbit so that the longitude drift increases.

Satellite repositioning manoeuvre

But there is a limit the incidence angle of the observations. Thus, at the end of the observations with the 3 swaths, Biomass raises its orbit so that the longitude drift increases. Once the drift is enough, the spacecraft returns to its nominal orbit and a new cycle begins.

Putting the pieces together to achieve global coverage Cesa

Because video is worth more than a thousand words

https://www.esa.int/ESA_Multimedia/Missions/Biomass/

Polar coverage

https://www.esa.int/ESA_Multimedia/Missions/Biomass/

esa

Classical orbit control:

- Manoeuvres are performed when the spacecraft reaches the limit of the dead-band
- The size of the interferometric baselines can vary significantly

Classical orbit control:

- Manoeuvres are performed when the spacecraft reaches the limit of the dead-band
- The size of the interferometric baselines can vary significantly
- Manoeuvres can be performed over any location on Earth

→ THE EUROPEAN SPACE AGENCY

esa

BIOMASS orbit control:

- Manoeuvres are performed every 3 days (same as the orbit cycle)
- The size of the interferometric baselines is much more

BIOMASS orbit control:

- Manoeuvres are performed every 3 days (same as the orbit cycle)
- The size of the interferometric baselines is much more
- Manoeuvres can be performed only over specific locations on Earth

Observation objectives

- 1. Systematic Acquisitions for forested land (red area) on both ascending and descending orbits
- 2. Global coverage in < 9 months (INT phase) and < 17 months (TOM phase).
- 3. Best effort acquisitions for non-forested areas (yellow + ocean/sea ice ROIs)
- 4. Acquisition mask restricted by US Space Objects Tracking Radar (SOTR)

(Red = Primary objective coverage mask, Yellow = Secondary objective coverage mask)

→ THE EUROPEAN SPACE AGENCY

