

Improving early detection of forest disturbances in the tropics

S. Mermoz¹, T. Koleck^{2,3}, J. Doblas¹, A. Bouvet³, M. Bottani^{2,4}, L. Ferro-Famil^{3,4}, T. Le Toan³

¹GlobEO ²CNES ³CESBIO ⁴ISAE Supaero

The BIOMASS mission objectives

Above-ground biomass (tons / hectare)

Forest height

Upper canopy height (meter)

Areas of forest clearing (hectare)

- 50 m pixel size
- 6 months temporal resolution
- 90% accuracy

2

The BIOMASS mission objectives

Spatial and temporal resolutions can be enhanced using multi-mission data

Above-ground biomass (tons / hectare)

Upper canopy height (meter)

Areas of forest clearing (hectare)

- 50 m pixel size
- 6 months temporal resolution
- 90% accuracy

3

The BIOMASS mission objectives

Spatial and temporal resolutions can be enhanced using multi-mission data

💳 💶 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🔤 🛻 🔯 🍉 📲 🚼 🖬 🖬 📾 🛥 👘 → The European space agency

Operational forest loss alert system

- Based on SAR Sentinel-1 data
- Every 6 to 12 days
- Minimum mapping unit of 0.1 hectare (pixel size 10m)

· e e sa

Operational forest loss alert system

- Based on SAR Sentinel-1 data
- Every 6 to 12 days
- Minimum mapping unit of 0.1 hectare (pixel size 10m)

То

- Detect and identify illegal activities, management of protected areas, monitor the conservation agreement, enforce the certification labels
- Contribute to the European strategy against imported deforestation to improve the sustainability of goods

💳 📰 📰 🧮 💳 🕂 📲 🔚 📰 📰 📲 📰 🛶 🔯 🖿 👫 📰 🛨 📰 🍁 🖬 🖛 🖓

· eesa

How did we get there

Operational forest loss alert SAR-based systems

System	Input images	Temporal resolution (d)	MMU (ha)	Processing Env.	Geographical coverage	Accuracy	Particularity
TropiSCO	S1 Asc/Des	6-12	0.1	CNES HPC	7 countries	+++	Country adapted
Deter-R	S1 Des	12	0.1	GEE	Legal Amazonia (Brazil)	+++	Country adapted
RADD	S1 Asc/Des	6-12	0.1	GEE	44 countries	+++	Uniform across countries
JJ-FAST	ALOS2- PALSAR2	42	2	JAXA HPC	77 countries	+	Uniform across countries
						Doblas et al.	

IJRS, 2023

In 2022 we mapped 7 countries

In 2022 we mapped 7 countries with which we collaborate cesa

In 2022 we mapped 7 countries

★ THE EUROPEAN SPACE AGENCY

The forest loss maps are accessible on tropisco.org

Every night, the TropiSCO processor :

- process new Sentinel-1 images
- detects forest loss
- updates the forest loss maps and statistics
- transfers products to webGIS
- Fully automatic process, same algorithms for all countries

CNES HPC facility

→ THE EUROPEAN SPACE AGENCY

Carbon loss estimation

0

Country

-

Cambodia French Guiana

Gabon

AGB x Forest loss areas Cambodia 4e+06 3e+06 2e+06 1e+06 0e+00 Carbon loss (MgC) 25000-25000-25000-French Guiana Forest loss 2018-2023 Gabon 400 Mg/ha CCI Biomass 2017 750000-500000. 250000 2020 2022 2018 Year

Carbon loss estimates

Study case in Cambodia in February 2023

Coverage in 2022

Coverage planned in 2023

Results in France

→ THE EUROPEAN SPACE AGENCY

Coverage planned in 2023

Extension to Amazonia

- Operational SAR and optical based detection systems have been compared in Amazonia (Doblas et al., 2023, IJRS)
- SAR-based tropical forest loss detection systems showed excellent detection accuracies, even in small, difficult-to-spot deforested patches (except for JJ-FAST)
- Complementaries among systems have been identified
- A new advanced alert system dedicated to Amazonia is being developed, taking advantage of TropiSCO and Deter-R, to map forest loss in Amazonia in an optimal manner

→ THE EUROPEAN SPACE AGENCY

Coverage planned in 2024-2025

Detection with SAR and optical data

■ 💶 💵 🚍 💳 🕂 📲 🔚 🔚 🔚 📲 🔚 🔚 🔤 🛶 🚳 🖕 📲 🚼 🖬 📾 🛥 👘 → THE EUROPEAN SPACE AGENCY

·eesa

Detection with SAR and optical data

25

Detection with S1 and S2 data using Bayesian forest loss detection – Ph.D. Marta Bottani

·eesa

26

Detection with S1 and S2 data using Bayesian forest loss detection – Ph.D. Marta Bottani

- Univariate case \rightarrow the time-series is segmented based on changes in the <u>mean</u> and the <u>variance</u>
- Multivariate case -> the time-series can be segmented based on changes in the mean, variance, and the correlation structure

© ONF

💳 🔜 🖬 🔚 🚍 💳 🕂 📲 🧮 🔚 📲 🚍 🛻 🚳 🌬 📲 🛨 🖬 📾 🗤 🖓