

MACHINE LEARNING IN MODEL-BASED FOREST HEIGHT INVERSION

Islam Mansour, Ronny Hänsch, Irena Hajnsek and Kostas Papathanassiou

Background: Forest Height inversion from InSAR Data

The interferometric coherence model:

 $\tilde{\gamma}_{vol} = e^{i\kappa_z z_0} \frac{\int_{z_0}^{z_0 + h_v} f(z) e^{i\kappa_z z} dz}{\int_{z_0}^{z_0 + h_v} f(z) dz} \qquad f(z) \dots \text{ vertical reflectivity function} \qquad \kappa_z \dots \text{ vertical wavenumber}$

The forest height is a function of:

 $h_v = F(f(z), \tilde{\gamma}_{vol}, \kappa_z, \phi_{0=}\kappa_z z_0)$ The description of f(z) is one of the key challenges in FH inversion

Background: Model-based Inversion and its Limitations

- Limitations: These models struggle with the high spatial variability of forest and terrain conditions, which reduces estimation accuracy and introduces biases.
- Need for Improvement: To tackle these limitations, there's a need for a model that can handle the spatial variability of the vertical reflectivity function without reducing estimation accuracy.

The Hybrid Approach: Integrating Machine Learning and Physical Modeling (Architecture)

Error-Correction Model

Assumptions Correction Model

Integration of Machine Learning and Physical Models

Integration of Machine Learning and Physical Models

Dataset and Site Overview We focused our test over Lope with TanDEM-X

 We focused our test over Lope with TanDEM-X Acquisitions with varying Height of Ambiguity (HoA) to test the models according to the following criteria, Generalizability, Robustness, Large-Scale Estimation Capability.

Results Explanation

ESA Polinsar Biomass 2023, DLR Microwaves and Radar Institute

DATA INTEGRATION

0.44

0.34

0.23

0.12-

- Use of ALOS2 Data
 - H, A, Alpha
 - $H, A, Alpha, e_1, e_2, e_3$

DATA INTEGRATION

- Use of ALOS2 Data
 - H, A, Alpha
- Use of Landsat
 - Spectral bands

Summary of Key Points and Implications

- Hybrid Modeling Excellence: Our novel hybrid modeling approach successfully integrates the domain-specific constraints of PM into ML. This enhances the model's robustness and generalizability while addressing the issue of explainability.
- Importance of Legendre Coefficients: The number (N) of Legendre coefficients is crucial for encapsulating the complexity of high-frequency components in the vertical reflectivity profile, thus playing a vital role in the model's performance.
- Generalizability Enhancement: To further improve the model's generalizability, the inclusion of diverse scenes with varying heights of ambiguity (vertical wavenumber) in the training dataset is imperative.
- ALOS Data Analysis: The ALOS data didn't lead to model improvement and even disrupted some underlying models. Overcoming this challenge might require expanding the dataset size and adopting a different strategy for ML data integration.
- Landsat Data Contributions: The inclusion of Landsat's multi-spectral images enriched our dataset, contributing to the diversity of the vertical reflectivity profile.

21

Thank You!

Looking forward for your questions!

40

30

- 20

- 10

 $\left(6 \right)$

No.	Legendre coefficients	HoA for Training	Features (Inputs – Parameters)		
	(N)		TanDEM-X	ALOS2	Landsat
1	3	[-65.22]	$\kappa_z, \tilde{\gamma}_{vol}, \cdots, \theta_o, \theta_T$	—	—
2	3	[-65.22]	$\kappa_z, \widetilde{\gamma}_{vol}, \cdots, \Theta_o, \Theta_T$	—	—
3	7	[52.45, -65.22, 95.41]	$\kappa_z, \widetilde{\gamma}_{vol}, \cdots, \Theta_o, \Theta_T$	—	-
4	7	[52.45, -65.22, 95.41]	$\kappa_z, \tilde{\gamma}_{vol}, \cdots, \theta_o, \theta_T$	H, A, Alpha	—
5	7	[52.45, -65.22, 95.41]	$\kappa_z, \tilde{\gamma}_{vol}, \cdots, \theta_o, \theta_T$	$H, A, Alpha, e_1, e_2, e_3$	-
6	7	[52.45, -65.22, 95.41]	$\kappa_z, \widetilde{\gamma}_{vol}, \cdots, \Theta_o, \Theta_T$	—	spectral bands

- a) Data Selection: Selection of HoA for training
- b) Coefficient Setup: A varying quantity (N) of Legendre coefficients
- c) Data Integration: TanDEM-X, ALOS2, Landsat 🛛 👍 👩

