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Background: Forest Height inversion from InSAR Data
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The interferometric coherence model:

ℎ" = 𝐹(𝑓 𝑧 ,	 &𝛾"#$ , 𝜅! , 𝜙)*𝜅!𝑧)) The description of 𝑓 𝑧  is one of the key challenges in FH inversion

The forest height is a function of:



Background: Model-based Inversion and its Limitations

§ Limitations: These models struggle with the high spatial variability of forest 
and terrain conditions, which reduces estimation accuracy and introduces 
biases.

§ Need for Improvement: To tackle these limitations, there's a need for a 
model that can handle the spatial variability of the vertical reflectivity function 
without reducing estimation accuracy.
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The Hybrid Approach: Integrating Machine Learning and 
Physical Modeling (Architecture)
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Integration of Machine Learning and Physical Models
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Dataset and Site Overview
§ We focused our test over Lope with TanDEM-X 

Acquisitions with varying Height of Ambiguity 
(HoA) to test the models according to the 
following criteria, Generalizability, Robustness, 
Large-Scale Estimation Capability.
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Results Explanation 
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DATA INTEGRATION
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• Use of ALOS2 Data
•  𝐻, 𝐴, 𝐴𝑙𝑝ℎ𝑎
• 𝐻, 𝐴, 𝐴𝑙𝑝ℎ𝑎, 𝑒., 𝑒/, 𝑒0
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DATA INTEGRATION
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• Use of ALOS2 Data
•  𝐻, 𝐴, 𝐴𝑙𝑝ℎ𝑎

• Use of Landsat
• Spectral bands

𝐻 𝐴𝐴𝑙𝑝ℎ𝑎4

Landsat
𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙	𝑏𝑎𝑛𝑑𝑠
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Summary of Key Points and Implications

§ Hybrid Modeling Excellence: Our novel hybrid modeling approach successfully 
integrates the domain-specific constraints of PM into ML. This enhances the 
model's robustness and generalizability while addressing the issue of explainability.

§ Importance of Legendre Coefficients: The number (N) of Legendre coefficients is 
crucial for encapsulating the complexity of high-frequency components in the 
vertical reflectivity profile, thus playing a vital role in the model's performance.

§ Generalizability Enhancement: To further improve the model's generalizability, the 
inclusion of diverse scenes with varying heights of ambiguity (vertical wavenumber) 
in the training dataset is imperative.

§ ALOS Data Analysis: The ALOS data didn't lead to model improvement and even 
disrupted some underlying models. Overcoming this challenge might require 
expanding the dataset size and adopting a different strategy for ML data integration.

§ Landsat Data Contributions: The inclusion of Landsat's multi-spectral images 
enriched our dataset, contributing to the diversity of the vertical reflectivity profile.
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Thank You!
Looking forward for your questions!
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HoA: [-78.51] HoA: [-85.27] HoA: [-85.95] HoA: [-94.21]
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HoA: [-80.3] HoA: [-80.9] HoA: [-87.32] HoA: [-95.81]
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Experiments Setup

a) Data Selection: Selection of HoA for training
b) Coefficient Setup: A varying quantity (N) of Legendre coefficients
c) Data Integration: TanDEM-X, ALOS2, Landsat 
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No. Legendre 
coefficients 

(N) 

HoA for Training Features (Inputs − Parameters)

TanDEM-X ALOS2 Landsat

1 3 [−65.22] 𝜅! , &𝛾"#$ , ⋯ , θ5, θ6 − −
2 3 [−65.22] 𝜅! , &𝛾"#$ , ⋯ , θ5, θ6 − −
3 7 [52.45, −65.22, 95.41] 𝜅! , &𝛾"#$ , ⋯ , θ5, θ6 − −
4 7 [52.45, −65.22, 95.41] 𝜅! , &𝛾"#$ , ⋯ , θ5, θ6 𝐻, 𝐴, 𝐴𝑙𝑝ℎ𝑎 −
5 7 [52.45, −65.22, 95.41] 𝜅! , &𝛾"#$ , ⋯ , θ5, θ6 𝐻, 𝐴, 𝐴𝑙𝑝ℎ𝑎, 𝑒., 𝑒/, 𝑒0 −
6 7 [52.45, −65.22, 95.41] 𝜅! , &𝛾"#$ , ⋯ , θ5, θ6 − 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑏𝑎𝑛𝑑𝑠

1 2 3

4 5 6
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