

ESA Forest Carbon Monitoring: Evaluation of various Earth Observation datasets and methods POLINSAR & BIOMASS 2023 Workshop

Oleg Antropov, Jukka Miettinen, Tuomas Häme, Lauri Seitsonen, VTT, Finland Ronald E. McRoberts, University of Minnesota, USA Maurizio Santoro, Oliver Cartus, Gamma Remote Sensing, Switzerland Shaojia Ge, Nanjing University of S&T, China Matteo Pardini, Kostas Papathanassiou, Irena Hajnsek, DLR, Germany

NATURAL RESOURCES

Outline

- Forest Carbon Monitoring project: overview
- EO based forest inventory and carbon estimation pathways
- Data & Methods evaluation
 - Study sites and modelling approaches
 - Selection of results on forest variable prediction and feature selection
 - General conclusions on role of sensor data and methods
 - Deep learning model transfer example

Objective

Key features

1

2

3

Close integration of in-situ and remotely sensed data.

Process-based forest ecosystem carbon modelling integrated into the system.

Flexibility to user needs ranging from private company area monitoring to continental analyses.

Forestry TEP

 The platform demonstrations were implemented on Forestry TEP

Ways to use Forestry TEP

- Use available applications that combine EO data and your own input datasets
- Develop your own processing scripts
- Share or license applications
- Access or share output products

Two modes of usage

Forest Carbon Monitoring

- Online web user interface
- REST API for interconnecting between systems

All information available at: <u>https://f-tep.com</u>

Project flow

Demonstration products

Forest structure variable products									
Stem density	Height	Diameter	Basal area						
Growing stock volume	Species proportions	Site type							
	Biomass and g	rowth products							
Above ground biomass	Below ground biomass	Stem volume increment							
Change magnitude	Change type	Biomass decrease mask							
Fartinel-2	Height	Automa Below Ground Biomase	Sentinel-2 2020 Sentinel-2 2020 Change magnitude 0 300- Sentinel-2 2021 Sentinel-2 202						

Forest Carbon Monitoring

Example of local level products - Galicia

Forest Carbon Monitoring

Examples of products - European wide mapping (I)

Forest Carbon Monitoring

Three main pathways in the algorithm evaluation

Forest variable prediction intercomparison

Method intercomparison rationale

Data & methods intercomparison summary

		Satellite data types			
Variable	Algorithms to be tested	Satellite optical	Satellite radar		
Basal area, Diameter, Tree species	Probability	x	x		
	k-NN	х	х		
	Probability	x	x		
Too balakt	k-NN	x	x		
Tree height	SAR/InSAR model inversion	x	x		
	Regression (SVR, RF, MLR)	x	x		
	Probability	x			
Site fertility	k-NN	х			
	Classification (SVM, RF)	х	х		
	Probability	x	х		
	k-NN	х	х		
Growing stock volume	SAR/InSAR model inversion		x		
	Regression (SVR, RF, MLR)	х	х		
	BIOMASAR approach		х		
Above-ground	PREBAS				
biomass	BIOMASAR approach		х		
Below-ground	PREBAS				
biomass	BIOMASAR approach				
	AutoChange	х			
Change detection	TanDEM-X InSAR height		х		
	Sentinel-1 radiometric contrast		X		

Testing sites

Site	Country	Forest types	Climate zone	Topography	
1	Finland	Semi-natural coniferous and broadleaf	Arctic	Hilly	
2	Finland	Semi-natural coniferous and broadleaf	Boreal	Gently undulating	
3	Ireland	Mainly coniferous plantations, some broadleaf	Atlantic	Gently undulating	Ireland
4	Romania	Semi-natural coniferous and broadleaf	Temperate/ Continental	Hilly	
5	Spain	Eucalypt plantations, some natural forests	Atlantic	Hilly	Romania Testing sites Demonstration areas
6	Spain	Semi-natural coniferous and broadleaf	Mediterrane an	Hilly to Mountainous	Spain Spain Continental
7	Peru	Amazonian evergreen	Tropical	Gently undulating	

Forest variable prediction intercomparison

Rationale: Benchmarking presently available satellite image datasets and suitable classification/prediction methodologies to identify

Illustration of studied combinations in the method intercomparison

Forest inventory with Earth Observation data

- Forest inventories provide detailed information about the current state of the forest and its change.
- Information can be reported on sample unit level (plots), on forest compartment level, other small-area or largearea level.
- Forest variables: forest tree height, canopy closure, tree species, growing stock volume, diameter at breast height, basal area.
- Data sources "traditionally" used in connection with forest inventories: aerial images, field survey, ALS data

Use of satellite Earth Observation data as auxiliary data along with plot-level data:

- allows to increase precision of estimation compared to using only forest plots;
- enables estimation for small areas when the plot sample size does not allow direct estimation;
- allows producing estimates in remote or hardly accessible areas;
- enables producing wall-to-wall maps with reference information key for model training and uncertainty quantification.

Image source: Google Earth, forest information: Metsäkeskus and National Land Survey of Finland, 2015

Sensor image data

- Optical multispectral images
- Synthetic aperture radar images
 - Multitemporal / time-series
 - Multipolarization
 - Interferometric
- Various combinations of SAR and optical images

 $I(m,x,y) = F[..., \{ target properties \}, ...]$

{ target properties } = $F^{-1}[I(x,y)]$

{ target properties} : {volumetric water content, roughness, orientation, vertical structure, density, spatial structure}

{ forest variables} : {growing stock volume, height, DBH, tree species, ...}

{ forest variables } = Z[I(m,x,y)]

Modeling principles

Models describing relationship between forest variables and RS observables:

- physics-based and semi-empirical (motivated by wavelength, resolution, env conditions), reference data used for "calibration"
 - normally suitable for a given sensor/wavelength (e.g., InSAR coherence models for vegetation, WCM vegetation)
- Statistical parametric models (partly overlaps with earlier), model fitting is used, reference data are used for teaching models
 - often don't care about "nature" of EO data
- Non-parametric approaches completely dependent on reference data
 - normally don't care about "nature" of EO data
- Semi-supervised approaches utilize EO data even when reference data are missing

Methodologies for prediction/classification

- Parametric, semi-empirical and physics-based models:
 - WCM (water cloud model) derived
 - RVoG (random volume over ground) derived
- Statistical parametric methodologies:
 - MLR
- Machine learning non-parametric methods:
 - k-NN,
 - support vector regression,
 - random forests
- Semisupervised non-parametric methods:
 - Probability

EO data intercomparison: SAR and optical images

700 RMSE= 103.8 m³/ha RMSE%=65.6% 600 R²=0.41 500 400 5. 300 200 100 200 400 500 600 700 300

Sentinel-1 & PALSAR-2

Sentinel-1 & PALSAR-2 & TanDEM-X

Sentinel-2

Sentinel-2 & Sentinel-1

reference

All sensor bands

Southern Finland site GSV predictions with kNN using various combinations of EO images

700

600

500

400

5. 300

200

EO data intercomparison: SAR and optical images

GSV prediction over Northern Finland site using various methods and EO data combinations: (a) Sentinel-2; (b) Sentinel-2 & Sentinel-1

EO data intercomparison: role of vertical structure

Role of the TanDEM-X dataset was important with all methods and many forest variables, least with forest tree species proportions and site index.

Southern Finland site forest variable predictions using various EO imagery with the k-NN method: top row – growing stock volume, bottom row – forest tree height.

F	=eat	ure se	Height (H)	Basal area (G)	GSV (V)	Diameter at breast height (D)	PINE proportion		
	Rank	Н	G	v	D		PINE	:	SPRUCE
	1	TDX-Coh	S2-5	TDX-CHM	TDX-	-Coh	S2-1		S2-6
	2	TDX-CHM	TDX-CHM	S2-6	S2-4		S2-4		S1-VH
	3	S2-5	P2-HV	TDX-Coh	TDX-	-CHM	TDX-C	НМ	S1-VV

1	TDX-Coh	S2-5	TDX-CHM	TDX-Coh	S2-1	S2-6	S2-4
2	TDX-CHM	TDX-CHM	S2-6	S2-4	S2-4	S1-VH	S2-2
3	S2-5	P2-HV	TDX-Coh	TDX-CHM	TDX-CHM	S1-VV	S2-3
4	S2-7	S2-4	P2-HV	S1-VV	S1-VH	S2-5	TDX-CHM
5	S2-1	S2-1	S2-5	P2-JD	S1-VV	S2-1	S2-6
6	S2-2	S2-2	S2-4	S1-VH	S2-2	S2-2	S2-5
7	P2-HH	S2-6	P2-HH	P2-HH	TDX-Coh	S2-7	S2-7
8	S2-4	P2-HH	S1-VH	P2-HV	P2-HV	P2-HH	P2-HH
9	P2-HV	P2-JD	S2-2	S2-5	S2-5	P2-HV	P2-HV
10	S2-3	S1-VV	S2-1	S2-7	P2-HH	P2-JD	S2-1
11	P2-JD	S1-VH	S2-7	S2-1	S2-6	TDX-CHM	S1-VV
12	S1-VH	S2-3	S2-3	S2-2	S2-7	TDX-Coh	S1-VH
13	S2-6	S2-7	P2-JD	S2-3	P2-JD	S2-3	TDX-Coh
14	S1-VV	TDX-Coh	S1-VV	S2-6	S2-3	S2-4	P2-JD

Sequential feature selection of EO data features over Northern Finland site

Broadleaf

trees (BL)

proportion

SPRUCE

proportion

BL

Forest Carbon Ø Monitoring

Feature selection

Lasso feature selection, alpha=1.0:															
		S2-1	S2-2	S2-3	S2-4	S2-5	S2-6	S2-7	S1-VH	S1-VV	P2-HH	P2-HV	P2-JD	TDX-CHM	TDX-Coh
	Н	0,0	0,0	0,0	0,3	1,9	0,0	0,0	0,0	0,0	0,0	0,0	0,0	2,2	2,4
	G	0,0	0,0	0,0	0,8	3,1	1,3	0,0	0,0	0,0	0,2	1,7	0,0	2,7	0,0
	V	0,0	2,5	0,0	15,1	36,2	0,0	7,0	0,0	1,1	4,1	10,8	0,0	59,9	9,5
	D	0,0	0,0	0,0	2,1	1,3	0,0	0,0	0,0	0,0	0,1	0,0	0,0	2,1	2,9
	PINE	1,6	16,9	0,4	20,9	0,0	0,0	0,0	26,7	25,0	0,0	1,4	0,0	5,7	0,0
	SPRUCE	2,5	0,0	0,0	0,0	0,0	12,9	0,0	27,6	25,4	1,3	0,0	0,0	0,0	0,0
	BL	0,0	15,5	0,0	22,0	6,4	14,6	0,0	0,6	0,0	2,4	0,0	0,0	3,0	1,9

Height (H) Basal area (G)

Diameter at

breast height

(D)

GSV (V)

PINE

proportion

SPRUCE

proportion

Broadleaf

trees (BL)

proportion

Random forest ranking: •

	S2-1	S2-2	S2-3	S2-4	S2-5	S2-6	S2-7	S1-VH	S1-VV	P2-HH	P2-HV	P2-JD	TDX-CHM	TDX-Coh
Н	0.014	0.089	0.019	0.11	0.093	0.052	0.042	0.018	0.015	0.023	0.04	0.0012	0.26	0.22
G	0.021	0.12	0.027	0.08	0.15	0.17	0.12	0.02	0.013	0.024	0.1	0.0023	0.1	0.046
V	0.018	0.078	0.02	0.13	0.15	0.13	0.096	0.011	0.011	0.022	0.06	0.0014	0.19	0.087
D	0.019	0.046	0.016	0.16	0.09	0.079	0.055	0.017	0.014	0.036	0.036	0.0012	0.23	0.2
PINE	0.084	0.074	0.15	0.22	0.059	0.067	0.039	0.058	0.11	0.033	0.032	0.0022	0.038	0.032
SPRUCE	0.051	0.079	0.086	0.11	0.098	0.14	0.13	0.07	0.095	0.038	0.022	0.0031	0.035	0.042
BL	0.051	0.073	0.068	0.27	0.053	0.11	0.064	0.029	0.041	0.084	0.052	0.0032	0.055	0.043

Mutual information ranking: •

	S2-1	S2-2	S2-3	S2-4	S2-5	S2-6	S2-7	S1-VH	S1-VV	P2-HH	P2-HV	P2-JD	TDX-CHM	TDX-Coh
Н	0.2	0.5	0.3	0.5	0.6	0.4	0.4	0.3	0.1	0.2	0.3	0.0	1.0	0.7
G	0.4	0.8	0.4	0.6	0.9	1.0	0.8	0.3	0.2	0.4	0.8	0.0	0.6	0.4
V	0.5	0.8	0.4	0.7	1.0	0.9	0.7	0.1	0.2	0.5	0.6	0.0	0.9	0.6
D	0.3	0.6	0.3	0.7	0.8	0.7	0.5	0.3	0.3	0.4	0.5	0.0	1.0	0.8
PINE	0.8	0.3	0.7	1.0	0.6	0.2	0.3	0.0	0.7	0.1	0.0	0.2	0.1	0.0
SPRUCE	0.7	0.7	0.7	0.6	0.7	1.0	0.8	0.1	0.3	0.3	0.2	0.0	0.4	0.0
BL	0.0	0.1	0.2	1.0	0.3	0.6	0.4	0.0	0.0	0.6	0.4	0.0	0.2	0.0

S2-1	Sentinel-2 band 2 Blue
52-2	Sentinel-2 band 3 green
S2-3	Sentinel-2 band 4 Red
S2-4	Sentinel-2 band 8 NIR
S2-5	Sentinel-2 band 5 VegRE
S2-6	Sentinel-2 band 11 SWIR
S2-7	Sentinel-2 band 12 SWIR
S1-VH	Sentinel-1 VH-pol
S2-VV	Sentinel-1 VV-pol
P2-HH	ALOS-2 PALSAR-2 HH-pol
P2-HV	ALOS-2 PALSAR-2 HV-pol
P2-JD	ALOS-2 PALSAR-2 day index
TDX-Coh	TanDEM-X coherence magnitude
TDX-CHM	TanDEM-X InSAR CHM

•

Forest variable prediction results: Methods

- Over majority of test sites, **MLR** proved to be a robust prediction method in the sense that increasing number of independent variables improved prediction accuracy.
- Basic InSAR/SAR models often required supervision/fine-tuning to achieve accuracy levels similar to other studied approaches. However, they seem robust when lacking reference data.
- **kNN** and **Probability** approach have demonstrated similar performance levels and were suitable for **multivariate prediction** of forest attributes.
- Nonparametric methods (e.g., kNN) often favoured smaller dimensionality of feature space and appear very sensitive to non-representative data.
- **RF** was somewhat superior to **SVR** (aside from site index), with both approaches yielding the **best** possible **predictions after finetuning** their hyperparameters.
- RF & SVR demonstrated the best possible predictions for several forest variables.
- Visual assessment of produced maps can affect final ranking

Forest variable prediction results: EO datasets

- Sentinel-2 or combined Sentinel-2 & Sentinel-1 was the most important data combination for predicting tree species proportions.
- For other structural variables, most centrally GSV and forest height, the best predictions were
 provided by combining radar and optical datasets, with a key role of Sentinel-2 and
 TanDEM-X datasets.
- From "all forest variables" perspective it is worthwhile to say that Sentinel-2 was the single best dataset, followed by TanDEM-X in case it was available.
- For practically all sites, combining Sentinel-1 with Sentinel-2 improved prediction accuracy by a small margin of 2-4 percentage units, indicating it is useful to combine the two Copernicus datasets.
- For several studied prediction methods and test sites, using all data bands simultaneously provided the best performance.
- With non-parametric approaches, such as kNN and Probability method, excluding "noisy" bands improved the prediction in several cases. Use of feature weighting in prediction can be useful to overcome the issue.

Conclusions on data and method combinations (I)

Datasets	Accuracy*	Considerations
Sentinel-1 only	50-80%	 Time series required Limited accuracy All weather capability
Sentinel-2 only	20-60%	 Required for species Best single dataset Inter-image variation
Sentinel-2 + Sentinel-1 or PALSAR2	20-60%	 Minor improvement to Sentinel-2 alone
Sentinel-2 + Sentinel-1 + TanDEM-X coherence	20-40%	 Great improvement for Height and GSV Limited availability

* Typical plot level accuracy variation between variables and sites. RMSE percent of the mean.

Conclusions on data and method combinations (II)

• Recommended "decision tree" for selecting methods:

New Horizons: Deep Learning

- Capable of automatically extracting spatial textural and temporal dependencies vs "hand-engineered features"
- Require high quality and extensive reference data labels, that is fully segmented labels
- Already quite popular in semantic segmentation tasks with EO data, such as land cover mapping
- Semi-supervised learning scenarios already demonstrated
- Possible domain adaptation or model transfer
- Several "pilot" studies in forest variable prediction using EO data

Šćepanović et al., Wide-Area Land Cover Mapping With Sentinel-1 Imagery Using Deep Learning Semantic Segmentation Models," in *IEEE JSTARS*, 2021

UNet based improved models

Study site location and division into training(red), validation (blue) and testing sets, 50x50 km2 size

Key points:

- Target variable forest tree height, reference data airborne laser measurements, predictor variables – features from several EO datasets (radar channels, optical bands)
- Comparison with machine learning approaches MLR, SVR, RF
- Testing separately Sentinel-1 images (frozen/nonfrozen), Sentinel-1 time series (27 datatakes), "good" Sentinel-2 image, SAR and optical combined

Ge, Antropov et al., "Improved Semisupervised UNet Deep Learning Model for Forest Height Mapping With Satellite SAR and Optical Data," IEEE JSTARS, vol. 15, pp. 5776-5787, 2022.

Unet+ based models

Forest Carbon

Monitoring

Ø

Forest height prediction: examples of predicted image patches and overall scatterplots for combined Sentinel-1 & Sentinel-2 data

reference height, m

Sentinel-2 image

Forest height prediction performance (Ge et al. 2022)

Sentinel-1 time series

combined SAR&optical

- 2000

Ε.

Ge, Antropov, Häme, Miettinen et al. Deep learning models with transfer learning in boreal forest mapping using multi-source satellite SAR/InSAR and optical images, *submitted*, 2023.

Unet+ model transfer

30

1400 1200 1000

800

600

Pretraining with ALS data

Non-finetuned model applied over target site

After fine-tuning with forest plots:

15

reference forest height.

20

RMSE = 6.84(46%)

 $R^2 = 0.24$

Multi-source EO: Sentinel-2 & Sentinel-1 & **ALOS-2 PALSAR-2** &TanDEM-X

forest height map

Antropov, Ge, Häme, Miettinen et al. Deep learning models with transfer learning in boreal forest mapping using multi-source satellite SAR/InSAR and optical images, submitted, 2023.

Conclusions

- Processing chains developed and tested for wide area forest variable mapping using high resolution optical and radar satellite images
- Optimal pathways suggested using currently available satellite and reference data
- Optimal sensor combinations identified, SAR + optical combination recommended
- Important role of TanDEM-X and vertical structure
- Deep learning model potential with Copernicus and multi-source EO datasets

Thank you!

More information at: <u>https://www.forestcarbonplatform.org</u>

