

Status of Copernicus Sentinel-1, Sentinel-1 Next Generation and ESA's Earth Explorer 10 Harmony

Björn Rommen, Nuno Miranda, Malcolm Davidson, Ramón Torres

ESA UNCLASSIFIED - For ESA Official Use Only

Copernicus SAR Context

💳 📕 🚝 💳 🚛 📕 🏣 🔤 📕 🔚 🚍 👫 🚍 🛶 🧖 💭 📕 🗮 🛨 🖬 🔤 👘 🖓

→ RADAR VISION FOR COPERNICUS

+ RADAR VISION FOR COPERNICUS

Sentinel-1 Overall Mission Status

ESA UNCLASSIFIED - For ESA Official Use Only

Sentinel-1 First Generation timeline

Sentinel-1 Mission in a Nutshell

MISSION PROFILE

- Constellation of two identical SAR C-band (5.405 GHz) satellites: (A & B → C units)
- Near-Polar, sun-synchronous (dawndusk) orbit at 698 km altitude
- 7.25 years lifetime (consumables for 12 years)
- 12-day repeat cycle (each satellite), 6 days for the constellation

OPERATIONS

- Systematic SAR data acquisition using a predefined observation scenario
- Instrument duty cycle of max. 25 min/orbit in High Bit Rate modes (30 min outside eclipse) and 75 min/orbit in Low Bit Rate mode (Wave)

PROGRAMMATICS

- Sentinel-1C launch Q4 2023
- Sentinel-1D currently in storage to be launched as needed

PAYLOAD

✤ C-Band SAR

- Centre frequency: 5.405 GHz
- Polarizations: HH, VV, HH/HV, VV/VH
- Incidence angle: 20° 45°
- Radiometric accuracy: 1 dB (3σ)
- Radiometric stability: 0.55 dB (3σ), 0.45 (3σ) for S-1 C/D
- NESZ: -22 dB
- DTAR: -22 dB
- AIS Instrument marine surveillance (for S-1 C and D)

IMAGING MODES

- Strip Map Mode: 80 km swath and 5x5 m (range x azimuth) resolution
- Interferometric Wide-Swath Mode: 250 km swath, 5x20 m resolution
- Extra-Wide-Swath Mode: 400 km swath and 20x40 m resolution
- Wave Mode: 5x5 m resolution, leap-frog sampled images of 20x20 km

SENTINEL-1 MISSION STATUS

PROGRAMME OF THE EUROPEAN UNION

SENTINEL-1A IS OPERATING WELL SINCE LAUNCH

S-1A Launched in April 2014 for a designed lifetime of 7.25 years \rightarrow extended lifetime Following S-1B permanent failure, the Sentinel-1 mission relies entirely on S-1A CCMs (RSAT-2, PAZ, TS-X, ICEEYE) and RCM are mitigating the S-1B gap thanks to increased quotas for Copernicus services.

SENTINEL-1B IS BEING DISPOSED

S-1B Launched in April 2016. Nominal operation until permanent failure in December 2021

- Power unit supplying current to the SAR
- Instrument and other platform functions working nominally
- S-1B disposal on-going June to December 2023. Atmosphere re-entry within 12y (worst case)
- The entire S-1B data is available on the Copernicus Data Access platform

SENTINEL-1 CONTINUITY

PROGRAMME OF

LONG-TERM CONTINUITY

Continuity through the 20's decade and beyond is ensured by the almost identical S-1C and S-1D units

- Addition of AIS instrument
- General improvement of SAR performance (radiometric stability)
- Sentinel-1 first generation will provide continuity with the **Sentinel-1 Next Generation** in 30's decade

Sentinel-1C launch

SCHEDULE

Sentinel-1C launch was supposed to take place in May 2023, followed by an IOC of about 4 months

Following VV22 failure, Sentinel-1C launch has been postponed:

- Arianespace is expected to provide in July 2023 more information on the launch manifest and a Sentinel-1C launch slot (1 month launch window)
- Sentinel-1C has been proposed to be the passenger for the return-to-flight of Vega-C aimed at in December 2023
- Arianespace is also expected in July to provide a 6-month launch window for Sentinel-1D launch.
- During IOC, S-1C will fly in a 1-day tandem configuration for 4 cycles and then will be placed in the nominal 6 days configuration for the remainder of the IOC.

SENTINEL-1 Duty Cycle

SAR DUTY CYCLE | Sentinel-1 can acquire up to 30min (per unit) of HBR (IW& EW) within an orbit rolling window (outside eclipse season)

SAR duty cycle has increased with resulting from the optimisation of the operations:

- 2014-2015 | Initial ramp-up
- **2017** | inclusion of EDRS in routine ops
- **2018** | Relaxation of 25 min constraint outside eclipse
- 2021 | slight increase of S-1A duty cycle to cope with S-1B loss

>> NO CAPACITY LEFT IN S-1A

S-1A Observation Scenario

PROGRAMME OF THE EUROPEAN UNION

- S-1 OBSERVATION SCENARIO MITIGATIONS after S-1B permanent unavailability
 - Mission capacity to perform global coverage has been compromised
 - Current S-1A observation provides (compared to 2016) has been tuned to preserve time series worldwide with the side effect of reduced capacity over Northern areas
 - Northern areas are covered by RCM thanks to CSA/ESA contingency agreement

Sentinel-1 Next Generation Mission Enhanced C-Band Data Continuity

ESA UNCLASSIFIED - For ESA Official Use Only

Sentinel-1 C-Band SAR Evolution Context

Sentinel-1 NG Highlights

ADS GmbH

TAS Italia

OBJECTIVES

- <u>Ensure continuity</u> and expansion of services and applications relying on Sentinel-1
- * *Enhance* existing services and applications
- *Enable* new application developments building on improved performance and observation gaps (e.g. resolution, revisit and others)

MISSION AND SYSTEM REQUIREMENTS

- Performance shall be equal or better than Sentinel-1 FG
- Revisit: 3 days Global, 0.5 days Arctic and sea ice
- ♦ Resolution $\leq 25 \text{ m}^2$
- ♦ NESZ \leq -26 dB
- Full continuity in Dual-Pol with Quad-Pol capability
- Use of a dedicated Mission Mode to cover the North Pole region
- ***** Same orbit of S1FG / ROSE-L in constellation of two satellites

Sentinel-1 NG Requirements (Phase-AB1)

Performance Requirements	Sentinel-1 NG	Sentinel-1
Latitude coverage	-80 to +90 deg	North-pole gap
Revisit	Goal: 3 days Global Goal: 0.5 days Arctic and Sea Ice	Up to 12 days
Latency	10 min European Waters 120 min Global	10 min RT, 1 h NRT emergency, > 3 h Global
Repeat pass InSAR	6 / 12 days (S1 & ROSE-L orbit)	6 / 12 days
Incidence angle access	Better than 20 – 45 deg	20 – 45 deg
Swath width	Larger than 400 km	250 IW – 400 EW
Resolution	25 m2	~100m2 IW - ~800m2 EW
NESZ	-26 dB	-22 dB
Polarization capability	SP, DP and QP	SP and DP
Duty cycle	43% average (~43 min/orbit)	25min/orbit

Other Mission Requirements

Enhanced operations through the **potential integration of additional satellites**

Automatic Identification System (AIS) payload to augment maritime services

Over open oceans the mission shall support the generation of **wave mode products**

Next Generation Imaging

Lower NESZ (-26 dB)

will further enhance mapping and characterisation of weak scatterers (benefits in soil moisture, oil spills, sea ice mapping, etc...)

E-SAR data for ESA AgriSAR campaign with Sentinel-1 simulation in stripmap and IWS mode. Color coding is RGB: HV-HH-HH. Stripmap resolution is the same as S1-NG, although with higher NESZ (DLR)

E-SAR standard (8 looks)

S1 SM [~S1-NG] (4 looks)

S1 IWS (4 looks)

S1NG Candidate Concepts

Two parallel Phase A/B1 have taken place from April 2021 until April 2023 One consortium led by ADS GmbH and the other by TAS-I

- Highlights from these activities:
 - Constellation of 2 satellites (same as in S1FG)
 - Flying the same orbit than S1FG (and ROSE-L)
 - SAR instrument based on planar phased array antenna exploiting state-of-the-art SAR technology based on SCORE and MAPS
 - Full coverage of North Pole will be warranted with a dedicated Polar Mode
- Constraints:
 - VEGA family launcher (VEGA-E)
 - Technology readiness
- The instrument is based on SCORE (DBF in elevation) and MAPS (DBF on-ground in azimuth)
- Similar to S1FG, a minimum number of modes is to be implemented
- S1NG will support the potential Harmony mission extension beyond S-1C/D
- AIS instrument providing continuity with the S-1C & S-1D payloads

💳 🔜 📕 🚝 🔚 🔚 🗮 💳 📕 📕 💳 👭 💳 🗮 💳 🔤 🔤 🔤 🔤 🔤 🔤 🔤 🔤

Sentinel-1 NG Programmatics

- Phase 0 (Mission Identification) carried out in 2019-2020
- Phase A/B1 in two years 2021-2023
 - PRR carried out in February/March 2022 for both consortia
 - ISRR concluded in March/April 2023 for both consortia
- ITT for Development Phase (Phase B2/C/D) expected in November 2023
- Expected KO B2/C/D first half 2024
- Expected launch > 2032

MISSION REQUIREMENTS

- Ad-hoc Expert Group (AHEG) October'20-January'21 drafted the preliminary MR for the Phase A/B1 ITT
- Mission Advisory Group (MAG) supported the Mission Trade-offs during Phase A/B1 and the evolution of the mission requirements

💳 🔜 📕 🚝 🧮 🔚 🗮 🔚 🗮 🔚 📕 📲 👫 🚍 ன 🧖 🚬 📕 🗮 🛨 🚍 🚾 🚱 🔸 THE EUROPEAN SPACE AGENC

Sentinel-1 NG and Copernicus Services

Moving to RTC

In order to broaden user community on the use of dense time-series

- Provide data products that do not require expert knowledge
- Move from radar geometry (slant & ground range) to map coordinates

GRD product likely to be replaced in the Sentinel Expansion / Next Gen mission processors by ARD data, including for instance the RTC product (Radiometric Terrain Correction).

RTC: Product family specification of Normalized Radar Backscatter (NRB) is formulated by the CEOS-ARD initiative (https://ceos.org/ard/)

- Backscatter normalized using local scattering area, not incident angle
- Facilitates multi-sensor data integration

Harmony within ESA's EO missions landscape

Harmony in a nutshell

Harmony is ESA's Earth Explorer 10 mission, comprised of two companion satellites in a loose convoy with Sentinel-1D (along-track separation ~350 km) Its payload suite consists of a passive SAR and a multi-view TIR instrument

Harmony – a multi-domain "Earth System" mission

Upper oceans and oceanatmosphere interactions

Land ice and sea ice

Tectonic strain and volcanic processes

💳 💶 🖬 🕂 💳 💶 📲 🚺 🗮 💳 📲 📲 🚝 📲 🖛 🔤 🚳 🔽 🚺 🧏 🛨 🖬 📼 😒

Bringing Harmony to a dynamic world

Harmony will resolve (sub) kilometer scale motion vectors and topography changes associated to dynamic Earth System processes:

- heat, gas and momentum exchanges at the airsea interface;
- the inner structure of ocean-atmosphere extremes;
- gradual and dynamic volume changes of global mountain and polar glaciers;
- instantaneous sea-ice motions to characterise sea-ice dynamics;
- 3-D deformation vectors associated to tectonic strain;
- topographic change at active volcanoes worldwide.

Harmony Polarimetry

Azimuth sensitivity

Polarisation behaviour

Reciprocity is lost

 $S_{HV} \neq S_{VH}$

- Canonical scattering mechanisms (planes, diplanes, dipoles, etc..) maintain DoP (degree of polarisation) but a polarisation rotation is introduced
- More complex targets:
 - Depolarisation
 - Loss/Appearence of Bragg
- Rotation of the polarisation basis

Harmony development schedule key dates

+

*

Uniqueness in Harmony

- Data driven ocean-atmosphere couplings and statistical. characterisation of vertical fluxes in ESM 2.0.
 - Understanding of air-sea interactions within extremes.
 - Sea-ice dynamics.
 - Global strain maps.
- Understand cycles of topographic change at volcanoes.
- Global and temporally consistent map of ice volume change (loss).
- Improved understanding of glacier dynamics.

💳 💶 📕 🛨 💳 💶 📲 📕 🖆 🤜 📲 📲 层 🔤 🔤 🚱 🔽 🚺 🗮 👫

Sentinel-1B Disposal approach

| 🛌 ::: 📟 🕂 ||| 📟 🔚 🚍 ||| ||| = = = ::: := 🚺 ||| = ::: ::: ::: :::

European Space Agency

*

esa

Sentinel-1 Data quality: Radiometric stability

Observation period: 03/2017 – 12/2022

-	1	S-1B IW mode VH annotated cal factor: 1.439 dB	VV
	0.5	the second stars	
מרוחו חראומו	0		
	-0.5		
J	-1	C EAP change 12-05-2020	HH / HV acquisitions –

Observation period: 03/2017 – 12/2021

Jul/2017 Jan/2018 Jul/2018 Jan/2019 Jul/2019 Jan/2020 Jul/2020 Jan/2021 Jul/2021 Jan/202 acquisition time

	9		51	
	μ [dB]	σ [dB]	μ [dB]	σ [dB]
IW1 VV	-0.13	0.23	-0.02	0.22
IW1 VH	-0.20	0.24	-0.20	0.29
IW1 VV&VH	-0.16	0.24	-0.09	0.26
IW2 VV	-0.11	0.17	-0.12	0.17
IW2 VH	-0.00	0.30	-0.25	0.25
IW2 VV&VH	-0.08	0.21	-0.15	0.20
IW3 VV	-0.05	0.23	-0.02	0.20
IW3 VH	0.08	0.30	-0.04	0.26
IW3 VV&VH	0.00	0.27	-0.03	0.23
IW 1-3 VV	-0.10	0.21	-0.06	0.21
IW 1-3 VH	-0.09	0.30	-0.17	0.28
IW 1-3 VV&VH	-0.104	0.242	-0.096	0.240

ESA UNCLASSIFIED - For Official Use

Derived radiometric accuracy

	S-1A	S-1B
absolute radiometric accuracy (1ơ)*	0.325 dB	0.323 dB
* including Long term stability o Dynamic range error	f the instrumen	t 0.05 dB (1ơ) 0.067 dB (1ơ)

Reference target accuracy

0.20 dB (1σ)

*

Radiometric accuracy continues to be within mission requirements and stable over time

18/05/2021 | Slide 28

__ II ▶_ II ━ + II ━ ½ __ II II __ _ H = № II __ II ₩ ↓

European Space Agency